首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
多配送中心车辆路径规划(multi-depot vehicle routing problem, MDVRP)是现阶段供应链应用较为广泛的问题模型,现有算法多采用启发式方法,其求解速度慢且无法保证解的质量,因此研究快速且有效的求解算法具有重要的学术意义和应用价值.以最小化总车辆路径距离为目标,提出一种基于多智能体深度强化学习的求解模型.首先,定义多配送中心车辆路径问题的多智能体强化学习形式,包括状态、动作、回报以及状态转移函数,使模型能够利用多智能体强化学习训练;然后通过对MDVRP的节点邻居及遮掩机制的定义,基于注意力机制设计由多个智能体网络构成的策略网络模型,并利用策略梯度算法进行训练以获得能够快速求解的模型;接着,利用2-opt局部搜索策略和采样搜索策略改进解的质量;最后,通过对不同规模问题仿真实验以及与其他算法进行对比,验证所提出的多智能体深度强化学习模型及其与搜索策略的结合能够快速获得高质量的解.  相似文献   

2.
目前智能决策系统中的经典算法智能化程度较低,而更为先进的强化学习算法应用于复杂决策任务又会导致存储上的维度灾难问题。针对该问题,提出了一种基于双深度Q网络的智能决策算法,改进了目标Q值计算方法,并将动作选择和策略评估分开进行,从而获得更加稳定有效的策略。智能体对输入状态进行训练,输出一个较优的动作来驱动智能体行为,包括环境感知、动作感知及任务协同等,继而在复杂度较高的决策环境中顺利完成给定任务。基于Unity3D游戏引擎开发了虚拟智能对抗演练的验证系统,对演练实时状态和智能体训练结果进行可视化,验证了双深度Q网络模型的正确性和稳定性,有效解决了强化学习算法存在的灾难问题。该智能决策算法有望在策略游戏、对抗演练、任务方案评估等领域发挥作用。  相似文献   

3.
针对现有深度强化学习算法在状态空间维度大的环境中难以收敛的问题,提出了在时间维度上提取特征的基于一维卷积循环网络的强化学习算法;首先在深度Q网络(DQN,deep Q network)的基础上构建一个深度强化学习系统;然后在深度循环Q网络(DRQN,deep recurrent Q network)的神经网络结构基础上加入了一层一维卷积层,用于在长短时记忆(LSTM,long short-term memory)层之前提取时间维度上的特征;最后在与时序相关的环境下对该新型强化学习算法进行训练和测试;实验结果表明这一改动可以提高智能体的决策水平,并使得深度强化学习算法在非图像输入的时序相关环境中有更好的表现。  相似文献   

4.
为了解决多智能体协同训练过程中的团队奖励稀疏导致样本效率低下、无法进行有效探索以及对参数敏感的问题,本研究在MAPPO算法的基础上引入了分阶段的思想,提出了基于多阶段强化学习的多智能体协同算法MSMAC。该算法将训练划分为2个阶段:一是构建基于进化策略优化的单智能体策略网络,二是对多智能体策略网络进行协同训练。在多智能体粒子环境下的实验结果表明,基于多阶段的强化学习算法不仅提升了协作性能,而且提高了样本的训练效率和模型的收敛速度。  相似文献   

5.
多智能体高效协作是多智能体深度强化学习的重要目标,然而多智能体决策系统中存在的环境非平稳、维数灾难等问题使得这一目标难以实现。现有值分解方法可在环境平稳性和智能体拓展性之间取得较好平衡,但忽视了智能体策略网络的重要性,并且在学习联合动作值函数时未充分利用经验池中保存的完整历史轨迹。提出一种基于多智能体多步竞争网络的多智能体协作方法,在训练过程中使用智能体网络和价值网络对智能体动作评估和环境状态评估进行解耦,同时针对整条历史轨迹完成多步学习以估计时间差分目标,通过优化近似联合动作值函数的混合网络集中且端到端地训练分散的多智能体协作策略。实验结果表明,该方法在6种场景中的平均胜率均优于基于值分解网络、单调值函数分解、值函数变换分解、反事实多智能体策略梯度的多智能体协作方法,并且具有较快的收敛速度和较好的稳定性。  相似文献   

6.
投资组合问题是量化交易领域中的热点问题。针对现有基于深度强化学习的投资组合模型无法实现自适应的交易策略和有效利用有监督信息的缺陷,提出一种集成的深度强化学习投资组合模型(IDRLPM)。首先,采用多智能体方法构造多个基智能体并设计不同交易风格的奖励函数,以表示不同的交易策略;其次,利用集成学习方法对基智能体的策略网络进行特征融合,得到自适应市场环境的集成智能体;然后,在集成智能体中嵌入基于卷积块注意力模块(CBAM)的趋势预测网络,趋势预测网络输出引导集成策略网络自适应选择交易比重;最后,在有监督深度学习和强化学习交替迭代训练下,IDRLPM有效利用训练数据中的监督信息以增强模型盈利能力。在上证50的成分股和中证500的成分股数据集中,IDRLPM的夏普比率(SR)达到了1.87和1.88,累计收益(CR)达到了2.02和1.34;相较于集合式的深度强化学习(EDRL)交易模型,SR提高了105%和55%,CR提高了124%和79%。实验结果表明,IDRLPM能够有效解决投资组合问题。  相似文献   

7.
区别于传统深度强化学习中通过从经验回放单元逐个选择的状态转移样本进行训练的方式,针对采用整个序列轨迹作为训练样本的深度Q网络(Deep Q Network,DQN),提出基于遗传算法的交叉操作扩充序列样本的方法.序列轨迹是由智能体与环境交互的试错决策过程中产生,其中会存在相似的关键状态.以两条序列轨迹中的相似状态作为交叉点,能产生出当前未出现过的序列轨迹,从而达到扩充序列样本数量、增大序列样本的多样性的目的,进而增加智能体的探索能力,提高样本效率.与深度Q网络随机采样训练样本和采用序列样本向后更新的算法(Episodic Backward Update,EBU)进行对比,所提出的方法在Playing Atari 2600视频游戏中能取得更高的奖赏值.  相似文献   

8.
针对目前大多数多智能体强化学习算法在智能体数量增多以及环境动态不稳定的情况下导致的维度爆炸和奖励稀疏的问题,提出了一种基于加权值函数分解的多智能体分层强化学习技能发现算法。首先,该算法将集中训练分散执行的架构与分层强化学习相结合,在上层采用加权值函数分解的方法解决智能体在训练过程中容易忽略最优策略而选择次优策略的问题;其次,在下层采用独立Q学习算法使其能够在多智能体环境中分散式地处理高维复杂的任务;最后,在底层独立Q学习的基础上引入技能发现策略,使智能体之间相互学习互补的技能。分别在简易团队运动和星际争霸Ⅱ两个仿真实验平台上对该算法与多智能体强化学习算法和分层强化学习算法进行对比,实验表明,该算法在奖励回报以及双方对抗胜率等性能指标上都有所提高,提升了整个多智能体系统的决策能力和收敛速度,验证了算法的可行性。  相似文献   

9.
兵棋推演与智能算法融合成为当前军事应用领域的研究热点,利用深度强化学习技术实现仿真推演中决策过程的智能化,可显著减少人为经验对决策过程的影响,提高推演效率和灵活性.现有基于DRL算法的决策模型,其训练时间过长,算力开销过大,无法满足作战任务的实时性需求.本文提出一种基于轻量级深度确定性策略梯度(BN-DDPG)算法的智能推演方法,根据推演规则,采用马尔可夫决策过程描述推演过程中的决策行为,以actorcritic体系为基础,构建智能体训练网络,其中actor网络使用自定义混合二进制神经网络,减少计算量;同时根据经验样本的状态和回报值建立双缓冲池结构,采用环境相似度优先提取的方法对样本进行采样,提高训练效率;最后基于自主研制的仿真推演平台进行实例验证.结果表明, BN-DDPG算法可简化模型训练过程,加快模型收敛速度,显著提高推演决策的准确性.  相似文献   

10.
针对现有基于策略梯度的深度强化学习方法应用于办公室、走廊等室内复杂场景下的机器人导航时,存在训练时间长、学习效率低的问题,本文提出了一种结合优势结构和最小化目标Q值的深度强化学习导航算法.该算法将优势结构引入到基于策略梯度的深度强化学习算法中,以区分同一状态价值下的动作差异,提升学习效率,并且在多目标导航场景中,对状态价值进行单独估计,利用地图信息提供更准确的价值判断.同时,针对离散控制中缓解目标Q值过估计方法在强化学习主流的Actor-Critic框架下难以奏效,设计了基于高斯平滑的最小目标Q值方法,以减小过估计对训练的影响.实验结果表明本文算法能够有效加快学习速率,在单目标、多目标连续导航训练过程中,收敛速度上都优于柔性演员评论家算法(SAC),双延迟深度策略性梯度算法(TD3),深度确定性策略梯度算法(DDPG),并使移动机器人有效远离障碍物,训练得到的导航模型具备较好的泛化能力.  相似文献   

11.
近年来深度强化学习在一系列顺序决策问题中取得了巨大的成功,使其为复杂高维的多智能体系统提供有效优化的决策策略成为可能.然而在复杂的多智能体场景中,现有的多智能体深度强化学习算法不仅收敛速度慢,而且算法的稳定性无法保证.本文提出了基于值分布的多智能体分布式深度确定性策略梯度算法(multi-agent distribut...  相似文献   

12.
In this paper, a multi-agent reinforcement learning method based on action prediction of other agent is proposed. In a multi-agent system, action selection of the learning agent is unavoidably impacted by other agents’ actions. Therefore, joint-state and joint-action are involved in the multi-agent reinforcement learning system. A novel agent action prediction method based on the probabilistic neural network (PNN) is proposed. PNN is used to predict the actions of other agents. Furthermore, the sharing policy mechanism is used to exchange the learning policy of multiple agents, the aim of which is to speed up the learning. Finally, the application of presented method to robot soccer is studied. Through learning, robot players can master the mapping policy from the state information to the action space. Moreover, multiple robots coordination and cooperation are well realized.  相似文献   

13.
针对当前多智能体强化学习算法难以适应智能体规模动态变化的问题,文中提出序列多智能体强化学习算法(SMARL).将智能体的控制网络划分为动作网络和目标网络,以深度确定性策略梯度和序列到序列分别作为分割后的基础网络结构,分离算法结构与规模的相关性.同时,对算法输入输出进行特殊处理,分离算法策略与规模的相关性.SMARL中的智能体可较快适应新的环境,担任不同任务角色,实现快速学习.实验表明SMARL在适应性、性能和训练效率上均较优.  相似文献   

14.
郭锐  彭军  吴敏 《计算机工程与应用》2005,41(13):36-38,146
增强学习属于机器学习的一种,它通过与环境的交互获得策略的改进,其在线学习和自适应学习的特点使其成为解决策略寻优问题有力的工具。多智能体系统是人工智能领域的一个研究热点,对于多智能体学习技术的研究需要建立在系统环境模型的基础之上,由于多个智能体的存在,智能体之间的相互影响使得多智能体系统高度复杂,多智能体系统环境属于非确定马尔可夫模型,因此直接把基于马尔可夫模型的增强学习技术引入多智能体系统是不合适的。论文基于智能体间独立的学习机制,提出了一种改进的多智能体Q学习算法,使其适用于非确定马尔可夫环境,并对该学习技术在多智能体系统RoboCup中的应用进行了研究,实验证明了该学习技术的有效性与泛化能力,最后简要给出了多智能体增强学习研究的方向及进一步的工作。  相似文献   

15.
多Agent深度强化学习综述   总被引:10,自引:4,他引:6  
近年来, 深度强化学习(Deep reinforcement learning, DRL)在诸多复杂序贯决策问题中取得巨大突破.由于融合了深度学习强大的表征能力和强化学习有效的策略搜索能力, 深度强化学习已经成为实现人工智能颇有前景的学习范式.然而, 深度强化学习在多Agent系统的研究与应用中, 仍存在诸多困难和挑战, 以StarCraft Ⅱ为代表的部分观测环境下的多Agent学习仍然很难达到理想效果.本文简要介绍了深度Q网络、深度策略梯度算法等为代表的深度强化学习算法和相关技术.同时, 从多Agent深度强化学习中通信过程的角度对现有的多Agent深度强化学习算法进行归纳, 将其归纳为全通信集中决策、全通信自主决策、欠通信自主决策3种主流形式.从训练架构、样本增强、鲁棒性以及对手建模等方面探讨了多Agent深度强化学习中的一些关键问题, 并分析了多Agent深度强化学习的研究热点和发展前景.  相似文献   

16.
多智能体系统在自动驾驶、智能物流、医疗协同等多个领域中广泛应用,然而由于技术进步和系统需求的增加,这些系统面临着规模庞大、复杂度高等挑战,常出现训练效率低和适应能力差等问题。为了解决这些问题,将基于梯度的元学习方法扩展到多智能体深度强化学习中,提出一种名为多智能体一阶元近端策略优化(MAMPPO)方法,用于学习多智能体系统的初始模型参数,从而为提高多智能体深度强化学习的性能提供新的视角。该方法充分利用多智能体强化学习过程中的经验数据,通过反复适应找到在梯度下降方向上最敏感的参数并学习初始参数,使模型训练从最佳起点开始,有效提高了联合策略的决策效率,显著加快了策略变化的速度,面对新情况的适应速度显著加快。在星际争霸II上的实验结果表明,MAMPPO方法显著提高了训练速度和适应能力,为后续提高多智能强化学习的训练效率和适应能力提供了一种新的解决方法。  相似文献   

17.
采用鱼群模型驱动多智能体可以涌现出优良的运动特性,但是,由于机器人与真实鱼类相比具有较大的差异性,使得鱼群模型难以应用于真实机器人系统.为此,提出一种结合深度学习与强化学习的迁移控制方法,首先,使用鱼群运动数据训练深度网络(deep neural network, DNN)模型,以此作为机器人成对交互的基础;然后,连接强化学习的深度确定性策略梯度方法(deep deterministic policy gradient, DDPG)来修正DNN模型的输出,设计集群最大视觉尺寸方法挑选关键邻居,从而将DNN+DDPG模型拓展到多智能体的运动控制.集群机器人运动实验表明:所提出方法能使机器人仅利用单个邻居信息就能形成可靠、稳定的集群运动,与单纯DNN直接迁移控制相比,所提出DNN+DDPG控制框架既可以保存原有鱼群运动的灵活性,又能增强机器人系统的安全性与可控性,使得该方法在集群机器人运动控制领域具有较大的应用潜力.  相似文献   

18.
共享经验的多主体强化学习研究   总被引:1,自引:0,他引:1  
焦殿科  石川 《计算机工程》2008,34(11):219-221
合作多主体强化学习的关键问题在于如何提高强化学习的学习效率。在追捕问题的基础上,该文提出一种共享经验的多主体强化学习方法。通过建立合适的状态空间使猎人共享学习经验,根据追捕问题的对称性压缩状态空间。实验结果表明,共享状态空间能够加快多主体强化学习的过程,状态空间越小,Q学习算法收敛越快。  相似文献   

19.
Topology-based multi-agent systems (TMAS), wherein agents interact with one another according to their spatial relationship in a network, are well suited for problems with topological constraints. In a TMAS system, however, each agent may have a different state space, which can be rather large. Consequently, traditional approaches to multi-agent cooperative learning may not be able to scale up with the complexity of the network topology. In this paper, we propose a cooperative learning strategy, under which autonomous agents are assembled in a binary tree formation (BTF). By constraining the interaction between agents, we effectively unify the state space of individual agents and enable policy sharing across agents. Our complexity analysis indicates that multi-agent systems with the BTF have a much smaller state space and a higher level of flexibility, compared with the general form of n-ary (n > 2) tree formation. We have applied the proposed cooperative learning strategy to a class of reinforcement learning agents known as temporal difference-fusion architecture for learning and cognition (TD-FALCON). Comparative experiments based on a generic network routing problem, which is a typical TMAS domain, show that the TD-FALCON BTF teams outperform alternative methods, including TD-FALCON teams in single agent and n-ary tree formation, a Q-learning method based on the table lookup mechanism, as well as a classical linear programming algorithm. Our study further shows that TD-FALCON BTF can adapt and function well under various scales of network complexity and traffic volume in TMAS domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号