首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zn isotope fractionation may provide new insights into Zn uptake, transport and storage mechanisms in plants. It was investigated here in the Zn hyperaccumulator Arabidopsis halleri and the nonaccumulator A. petraea. Plant growth on hydroponic solution allowed us to measure the isotope fractionation between source Zn (with Zn(2+) as dominant form), shoot and root. Zn isotope mass balance yields mean isotope fractionation between plant and source Zn Δ(66)Zn(in-source) of -0.19 ± 0.20‰ in the nonaccumulator and of -0.05 ± 0.12‰ in the hyperaccumulator. The isotope fractionation between shoot Zn and bulk Zn incorporated (Δ(66)Zn(shoot-in)) differs between the nonaccumulator and the hyperaccumulator and is function of root-shoot translocation (as given by mass ratio between shoot Zn and bulk plant Zn). The large isotope fractionation associated with sequestration in the root (0.37‰) points to the binding of Zn(2+) with a high affinity ligand in the root cell. We conclude that Zn stable isotopes may help to estimate underground and aerial Zn storage in plants and be useful in studying extracellular and cellular mechanisms of sequestration in the root.  相似文献   

2.
The stability and bioavailability of nanoparticles is governed by the interfacial properties that nanoparticles acquire when immersed in a particular aquatic media as well as the type of organism or cell under consideration. Herein, high-throughput screening (HTS) was used to elucidate ZnO nanoparticle stability, bioavailability, and antibacterial mechanisms as a function of iron doping level (in the ZnO nanoparticles), aquatic chemistry, and bacterial cell type. ζ-Potential and aggregation state of dispersed ZnO nanoparticles was strongly influenced by iron doping in addition to electrolyte composition and dissolved organic matter; however, bacterial inactivation by ZnO nanoparticles was most significantly influenced by Zn(2+) ions dissolution, cell type, and organic matter. Nanoparticle IC(50) values determined for Bacillus subtilis and Escherichia coli were on the order of 0.3-0.5 and 15-43 mg/L (as Zn(2+)), while the IC(50) for Zn(2+) tolerant Pseudomonas putida was always >500 mg/L. Tannic acid decreased toxicity of ZnO nanoparticles more than humic, fulvic, and alginic acid, because it complexed the most free Zn(2+) ions, thereby reducing their bioavailability. These results underscore the complexities and challenges regulators face in assessing potential environmental impacts of nanotechnology; however, the high-throughput and combinatorial methods employed promise to rapidly expand the knowledge base needed to develop an appropriate risk assessment framework.  相似文献   

3.
We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.  相似文献   

4.
This contribution evaluates two possible routes of stable isotope tracing for ZnO nanomaterials. For this we carried out the first high precision Zn isotope analyses of commercially available ZnO nanomaterials, to investigate whether such materials exhibit isotope fractionations that can be exploited for tracing purposes. These measurements revealed Zn isotopic compositions (of δ(66/64)Zn = +0.28 to -0.31‰ relative to JMC Lyon Zn) that are indistinguishable from "normal" natural and anthropogenic Zn in environmental samples. Stable isotope tracing therefore requires the application of purpose-made isotopically enriched ZnO nanoparticles. A detailed evaluation identified the most suitable and cost-effective labeling isotopes for different analytical requirements and techniques. It is shown that, using relatively inexpensive (68)Zn for labeling, ZnO nanoparticles can be reliably detected in natural samples with a Zn background of 100 μg/g at concentrations as low as about 5 ng/g, if the isotopic tracing analyses are carried out by high precision mass spectrometry. Stable isotope tracing may also be able to differentiate between the uptake by organisms of particulate ZnO and Zn(2+) ions from the dissolution of nanoparticles.  相似文献   

5.
The metal hyperaccumulating plant Thlaspi caerulescens is effective in depleting plant-available metals from the soil. We hypothesized that this reduction of toxic metals in the rhizosphere of T. caerulescens would increase the growth of less metal-tolerant plants with their roots permitted to intermingle and develop coincident rhizospheres. The extent of rhizosphere interaction between T. caerulescens and a coplanted nonaccumulator species, Thlaspi arvense, was controlled using barriers. Two media with elevated concentrations of water-extractable Zn were prepared by enriching one soil with zinc oxide (ZnO) or zinc sulfide (ZnS). The shoot mass of T. arvense was increased by 30% when its roots were permitted to intermingle with those of T. caerulescens in the ZnO treatment. The concomitant 2-3-fold reduction in shoot Zn concentration in T. arvense confirmed that its improved growth was associated with reduced uptake and phytotoxicity of Zn. Thlaspi arvense also showed increased growth and reduced metal uptake when cocropped with T. caerulescens in the ZnS treatment. We conclude that the strong Zn accumulation by T. caerulescens might enhance the establishment and development of surrounding less-tolerant species on soils that are naturally- or anthropogenically-enriched with metals.  相似文献   

6.
Stable Zn isotope signatures offer a potential tool for tracing Zn uptake and transfer mechanisms within plant-soil systems. Zinc isotopic compositions were determined in the Zn hyperaccumulator Noccaea caerulescens collected at a Zn-contaminated site (Viviez), a serpentine site (Vosges), and a noncontaminated site (Sainte Eulalie) in France. Meanwhile, a Zn-tolerant plant ( Silene vulgaris ) was also collected at Viviez for comparison. While δ(66)Zn was substantially differentiated among N. caerulescens from the three localities, they all exhibited an enrichment in heavy Zn isotopes of 0.40-0.72‰ from soil to root, followed by a depletion in heavy Zn from root to shoot (-0.10 to -0.50‰). The enrichment of heavy Zn in roots is ascribed to the transport systems responsible for Zn absorption into root symplast and root-to-shoot translocation, while the depletion in heavy Zn in shoots is likely to be mediated by a diffusive process and an efficient translocation driven by energy-required transporters (e.g., NcHMA4). The mass balance yielded a bulk Zn isotopic composition between plant and soil (Δ(66)Zn(plant-soil)) of -0.01‰ to 0.63‰ in N. caerulescens , indicative of high- and/or low-affinity transport systems operating in the three ecotypes. In S. vulgaris , however, there was no significant isotope fractionation between whole plant and rhizosphere soil and between root and shoot, suggesting that this species appears to have a particular Zn homeostasis. We confirm that quantifying stable Zn isotopes is useful for understanding Zn accumulation mechanisms in plants.  相似文献   

7.
We recently clarified that the side-scatter(ed) light (SSC) of flow cytometry (FCM) could be used as a guide to measure the uptake potential of nanoparticles [ Suzuki et al. Environ. Sci. Technol. 2007 , 41 , 3018 - 3024 ]. In this paper, the method was improved so as to be able to determine simultaneously the uptake potential of nanoparticles and the production of reactive oxygen species (ROS), and correlations with genotoxicity were evaluated. In the FCM analysis, SSC and fluorescence of 6-carboxy-2,7'-diclorodihydrofluorescein diacetate, di(acetoxy ester) based on ROS production were concurrently detected after treatments with ZnO, CuO, Fe(3)O(4), TiO(2), and Ag nanoparticles. The ZnO and CuO nanoparticles caused high ROS production, which was more significant in the cells with higher SSC intensity. The increase of SSC intensity was more significant for TiO(2) than ZnO and CuO, whereas ROS production was higher for ZnO and CuO than TiO(2), suggesting that the extent of ROS production based on the uptake of nanoparticles differed with each kind of nanoparticle. ROS production was correlated with generation of the phosphorylated histone H2AX (γ-H2AX), a marker of DNA damage, and an antioxidant, n-acetylcysteine, could partially suppress the γ-H2AX. This method makes it possible to predict not only uptake potential but also genotoxicity.  相似文献   

8.
Metal oxide nanoparticles are finding increasing application in various commercial products, leading to concerns for their environmental fate and potential toxicity. It is generally assumed that nanoparticles will persist as small particles in aquatic systems and that their bioavailability could be significantly greater than that of larger particles. The current study using nanoparticulate ZnO (ca. 30 nm) has shown that this is not always so. Particle characterization using transmission electron microscopy and dynamic light scattering techniques showed that particle aggregation is significant in a freshwater system, resulting in flocs ranging from several hundred nanometers to several microns. Chemical investigations using equilibrium dialysis demonstrated rapid dissolution of ZnO nanoparticles in a freshwater medium (pH 7.6), with a saturation solubility in the milligram per liter range, similar to that of bulk ZnO. Toxicity experiments using the freshwater alga Pseudokirchneriella subcapitata revealed comparable toxicity for nanoparticulate ZnO, bulk ZnO, and ZnCl2, with a 72-h IC50 value near 60 microg Zn/ L, attributable solely to dissolved zinc. Care therefore needs to be taken in toxicity testing in ascribing toxicity to nanoparticles per se when the effects may be related, at least in part, to simple solubility.  相似文献   

9.
Cadmium accumulation in crops presents a potential risk to human health. To understand the difference between dicotyledonous and monocotyledonous species in respect of Cd accumulation, and to develop fertilizer management practices to minimise Cd uptake, a growth chamber study was conducted to evaluate the interactive effects of Cd concentration in phosphate and Zn fertilizer on Cd uptake in flax (Linum usitatissimum L) and durum wheat (Triticum turgidum L). Cadmium concentration was higher in flax than durum wheat shoots. Cadmium concentration was lower and Zn concentration higher in the flax seed and durum wheat grain than in the root, shoot or straw of both species. These results suggest that flax has comparatively ineffective barriers discriminating against the transport of Cd from the root to the shoot via the xylem, and that both crops may restrict Cd translocation to the seed/grain via the phloem. Commercial grade monoammonium phosphate (NH4H2PO4) or triple superphosphate (Ca(H2PO4)2) produced higher seed Cd concentrations than did reagent grade P in flax but not in durum wheat. Application of P significantly decreased seed/grain Zn concentration and increased seed/grain Cd concentration. Zinc addition at 20 mg Zn kg?1 soil with P decreased seed/grain Cd concentration (average 42.2% for flax, 65.4% for durum wheat), Cd accumulation (average 37.2% for flax, 62.4% for durum wheat) and Cd translocation to the seed/grain (average 20.0% for flax, 34.5% for durum wheat) in both crops. These results indicate that there is an antagonistic effect of Zn on Cd for root uptake and distribution within the plant. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
With the increasing utilization of nanomaterials, there is a growing concern for the potential environmental and health effects of them. To assess the environmental risks of nanomaterials, better knowledge about their fate and toxicity in plants are required. In this work, we compared the phytotoxicity of nanoparticulate Yb(2)O(3), bulk Yb(2)O(3), and YbCl(3)·6H(2)O to cucumber plants. The distribution and biotransformation of the three materials in plant roots were investigated in situ by TEM, EDS, as well as synchrotron radiation based methods: STXM and NEXAFS. The decrease of biomass was evident at the lowest concentration (0.32 mg/L) when exposed to nano-Yb(2)O(3), while at the highest concentration, the most severe inhibition was from YbCl(3). The inhibition was dependent on the actual amount of toxic Yb uptake by the cucumber plants. In the intercellular regions of the roots, Yb(2)O(3) particles and YbCl(3) were all transformed to YbPO(4). We speculate that the dissolution of Yb(2)O(3) particles induced by the organic acids exuded from roots played an important role in the phytotoxicity. Only under the nano-Yb(2)O(3) treatment, YbPO(4) deposits were found in the cytoplasm of root cells, so the phytotoxicity might also be attributed to the Yb internalized into the cells.  相似文献   

11.
No evidence for cerium dioxide nanoparticle translocation in maize plants   总被引:2,自引:0,他引:2  
The rapidly increasing production of engineered nanoparticles has raised questions regarding their environmental impact and their mobility to overcome biological important barriers. Nanoparticles were found to cross different mammalian barriers, which is summarized under the term translocation. The present work investigates the uptake and translocation of cerium dioxide nanoparticles into maize plants as one of the major agricultural crops. Nanoparticles were exposed either as aerosol or as suspension. Our study demonstrates that 50 μg of cerium/g of leaves was either adsorbed or incorporated into maize leaves. This amount could not be removed by a washing step and did not depend on closed or open stomata investigated under dark and light exposure conditions. However, no translocation into newly grown leaves was found when cultivating the maize plants after airborne particle exposure. The use of inductively coupled mass spectrometer allowed detection limits of less than 1 ng of cerium/g of leaf. Exposure of plants to well-characterized nanoparticle suspensions in the irrigation water resulted also in no detectable translocation. These findings may indicate that the biological barriers of plants are more resistant against nanoparticle translocation than mammalian barriers.  相似文献   

12.
In experiments on rats there was researched bioavailability of zinc oxide (ZnO) nanoparticles. There were determined the content of Zn in blood serum and tibia, intestinal uptake of macromolecules of egg albumin, some hematological, biochemical and immune indices, liver cells apoptosis. The results obtained show that the uptake of nanoparticles of ZnO enables restoration of this microelement status damaged by zinc deficit diet.  相似文献   

13.
Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment, and chemotherapy providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolution to Zn(2+), but the relative contribution of Zn(2+) to ZnO NP bioavailability and toxicity is not clear. We show that a fraction of the ZnO NPs in suspension dissolves, and this fraction cannot account for the toxicity of the ZnO NP suspensions to Daphnia magna. Gene expression profiling of D. magna exposed to ZnO NPs or ZnSO(4) at sublethal concentrations revealed distinct modes of toxicity. There was also little overlap in gene expression between ZnO NPs and SiO(x) NPs, suggesting specificity for the ZnO NP expression profile. ZnO NPs effected expression of genes involved in cytoskeletal transport, cellular respiration, and reproduction. A specific pattern of differential expression of three biomarker genes including a multicystatin, ferritin, and C1q containing gene were confirmed for ZnO NP exposure and provide a suite of biomarkers for identifying environmental exposure to ZnO NPs and differentiating between NP and ionic exposure.  相似文献   

14.
不同养分缺乏对烤烟根系形态及营养生长的影响   总被引:2,自引:0,他引:2  
为了弄清矿质元素缺乏对烟苗生长的影响,以K326和湘烟四号两个烤烟品种幼苗为材料,在氮、磷、钾、钙、镁、硫、铁缺乏条件下观察烟株的缺素症状,并测定根系形态和植株生物量。结果表明,两个烤烟品种在7种缺素条件下地上部和根系均出现各自特有的症状,其中缺铁症状出现最早,缺硫症状出现最晚。缺氮处理促进K326和湘烟四号烤烟根系生长,其中根系生物量分别比对照增加80.0%和78.1%,然而地上部生物量明显下降。而缺硫处理对两个烤烟品种的根系形态和地上部生物量影响不大。其他缺素处理下,两个品种的根系和地上部生物量明显下降,K326品种的侧根数也显著降低,但是湘烟四号品种仅在缺镁和缺铁处理中降低明显。  相似文献   

15.
The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn species in soils. Important factors include the rate of Zn release from the contaminant phases and effects of the contaminant phase on bulk soil properties and on local chemical conditions around weathering contaminant particles.  相似文献   

16.
There is a critical need to better define the relationship among particle size, surface area, and dissolution rate for nanoscale materials to determine their role in the environment, their toxicity, and their technological utility. Although some previous studies concluded that nanoparticles dissolve faster than their bulk analogs, contradictory evidence suggests that nanoparticles dissolve more slowly. Furthermore, insufficient characterization of the nanoparticulate samples and the solution chemistry in past studies obscures the relationship between particle size, surface area, and dissolution rate. Here we report amorphous SiO(2) dissolution rates in aqueous solutions determined from complementary mixed-flow and closed reactor experiments at 6.9 ≥ pH ≥ 11.2 and 25 °C as a function of particle diameter from 25 to 177 nm. Experiments were performed at far-from-equilibrium conditions to isolate kinetic effects from those of changing the reaction driving force on overall dissolution rates. Measured far-from-equilibrium mass normalized dissolution rates are nearly independent of particle size, but corresponding BET surface area normalized rates decrease substantially with decreasing particle size. Combining these observations with existing established kinetic rate equations allows the prediction of nanoparticle dissolution rates as a function of both particle size and aqueous fluid saturation state.  相似文献   

17.
Recent reports suggest that significant fractionation of stable metal isotopes occurs during biogeochemical cycling and that the uptake into higher plants is an important process. To test isotopic fractionation of copper (Cu) and zinc (Zn) during plant uptake and constrain its controls, we grew lettuce, tomato, rice and durum wheat under controlled conditions in nutrient solutions with variable metal speciation and iron (Fe) supply. The results show that the fractionation patterns of these two micronutrients are decoupled during the transport from nutrient solution to root. In roots, we found an enrichment of the heavier isotopes for Zn, in agreement with previous studies, but an enrichment of isotopically light Cu, suggesting a reduction of Cu(II) possibly at the surfaces of the root cell plasma membranes. This observation holds for both graminaceous and nongraminaceaous species and confirms that reduction is a predominant and ubiquitous mechanism for the acquisition of Cu into plants similar to the mechanism for the acquisition of iron (Fe) by the strategy I plant species. We propose two preliminary models of isotope fractionation processes of Cu and Zn in plants with different uptake strategies.  相似文献   

18.
Antifungal and antimycotoxin properties of zinc (Zn) compounds were evaluated against toxigenic strains of Fusarium graminearum, Penicillium citrinum and Aspergillus flavus. In addition, was verified the activity of these Zn‐compounds on conidia production, hyphae morphological alterations, mortality and reactive oxygen species (ROS) production. The Zn‐compounds treatments utilised were zinc oxide nanoparticles (ZnO‐NPs), zinc oxide (ZnO), zinc sulphate (ZnSO4) and zinc perchlorate (Zn(ClO4)2). The Zn‐compounds effect on growth diameter of fungal colony was concentration dependent. Two treatments (ZnSO4 and Zn(ClO4)2) completely inhibited the fungal growth and their ability to produce mycotoxins. The conidia production of all fungi also was reduced after the treatment with Zn‐compounds. Morphological alterations occurred in the treated fungi showing hyphae damage. The treatments led to cell death and ROS production observed in the fungi hyphae. ZnSO4 and Zn(ClO4)2 were the compounds that showed better results as antifungal, presenting antimycotoxin activity and caused alterations in the fungi cell structure.  相似文献   

19.
为明确丛枝菌根(AM)真菌对不同氮效率烟草品种养分吸收的作用,采用盆栽试验,以不接种处理(CK)为对照,研究了4株AM真菌(Fm、Ri、Ce、Gm)对不同氮效率品种烟草[ZY100(低)、K326(中)、NC89(高)]生长及矿质养分吸收的影响。结果表明,4种菌株均能与烟草根系形成共生关系。接种AM真菌,各处理烟株的干物质累积量、株高、最大根长、根表面积、根体积、总根长、根尖数及养分吸收量均得到不同程度提高。各烟草品种干物质累积量表现为NC89>ZY100>K326,菌根依赖性表现为ZY100>NC89>K326。各矿质养分中,接种AM真菌各处理N、P、K、Ca累积量增幅效果因菌株种类和烟草品种而异,微量元素Fe、Mn、Cu、Zn积累量增幅效果主要受菌株种类影响,Mg积累量在各处理间差异不显著。可见,接种AM真菌可以有效地促进烤烟根系形态的发育,优化根系结构,进而促进烟株对养分的吸收和积累。整体来看,氮效率低的ZY100更易与菌株建立共生关系,Ce菌株对3个氮效率品种烟草亲和力更强,综合而言以Ce-ZY100处理效果最佳。  相似文献   

20.
Deterioration in water quality caused by the movement of excessive soil P has created a condition necessary for the development of a sustainable P remediation technology. In this investigation, the phytoremediation potential of Gulf and Marshall ryegrass (Lolium multiflorum) grown in a greenhouse was determined under varying conditions of soil P concentration, pH, and temperature. Both genotypes demonstrated P accumulations > or =1% shoot dry weight depending on soil P concentrations (0-10 g of P/kg of soil), with higher shoot P in Gulf than Marshall ryegrass. An increase in plant biomass was proportional to the increasing concentrations of P up to a level of 10 g of P/kg of soil. The effect of soil pH on plant uptake of P was noticeable with a significant rise in shoot P in acidic soil (pH 5.6) as compared to soil with pH 7.8. Significant differences were observed in the biomass productivity and shoot P accumulation at varying temperatures in both grass types. The patterns of acid phosphomonoesterase and phytase activities in plant roots were interesting, activities being 2-fold higher in alkaline soil than acidic soil in both genotypes. The effect of P supply on the enzyme activity was also distinct, as plants growing in a high P concentration showed higher activity (nearly 30%) than those growing under P deficiency conditions (with no addition of P). These results indicate that Gulf and Marshall ryegrass can accumulate high P under optimal conditions and thus reduce soil P concentrations in successive cropping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号