首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescence glass is a potential candidate for the light‐emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu‐, Tb‐, and Dy‐doped oxyfluoride silicate glasses for LEDs by means of X‐ray diffraction, photoluminescence spectra, Commission Internationale de L'Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near‐ultraviolet light due to the simultaneous generation of blue, green, yellow, and red‐light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single‐doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can be suppressed by introducing B2O3 into the glass. The conversion of Eu3+ to Eu2+ takes place in Eu single‐doped oxyfluoride aluminosilicate glasses. The creation of CaF2 crystals enhances the conversion efficiency. In addition, energy transfers from Dy3+ to Tb3+ and Tb3+ to Eu3+ ions occurred in Eu/Tb/Dy codoped glasses, which can be confirmed by analyzing fluorescence spectra and energy level diagrams.  相似文献   

2.
A series of Dy3+–Eu3+‐codoped ZrO2 nanocrystals with tetragonal and cubic symmetry was synthesized via a wet chemical reaction. When the Eu3+‐doping content was fixed, the crystal structure could be stabilized from the mixed phase to single cubic phase by simply adjusting the content of Dy3+. The cubic ZrO2:Dy3+–Eu3+ nanoparticles exhibited spherical and nonagglomerated morphology. The effective phonon energy of cubic ZrO2:5%Dy3+–5%Eu3+ was calculated to be 445 cm?1, which is lower than the previously reported results. Extensive luminescence studies of ZrO2:Dy3+–Eu3+ as a function of Dy3+ content demonstrated that the dopant concentration and its site symmetry play an important role in the emissive properties. Under 352 nm excitation, the increment of Dy3+ concentration in ZrO2:Dy3+–Eu3+ led to an increase in orange (590 nm) and red (610 nm) emissions of Eu3+ ions, which are attributed to the 5D07FJ(J = 1, 2) transitions of Eu3+ ions. This increment is possibly due to the efficient energy transfer (ET) 4F9/2:Dy3+5D0:Eu3+. The phosphors can generates light from yellow through near white and eventually to warm white by properly tuning the concentration of Dy3+ ions through the ET and change in site symmetry. These phosphors may be promising as warm‐white‐/yellow‐emitting phosphors.  相似文献   

3.
A luminescent Eu, Dy: SrAl2O4 glass‐ceramics with high transparency in the visible region was successfully synthesized using the frozen sorbet technique with the control of O2 partial pressure () for the oxidation of Eu2+ ions. The glass‐ceramics include Eu2+, Eu3+, and Dy3+ ions, and thus exhibits three characteristic types of emission bands, 4f–5d at around 520 nm (Eu2+ ions), 4f–4f at 610 nm (Eu3+ ions), and 480 nm (Dy3+ ions). The Eu, Dy: SrAl2O4 glass‐ceramics provide remarkable long‐persistent luminescence under dark condition. The glass‐ceramics also exhibits color‐changing luminescence in the visible region based on their remarkable light storage properties. The luminescent Eu, Dy: SrAl2O4 glass‐ceramics using the frozen sorbet technique with control of are promising materials for application in novel photonic and light storage materials.  相似文献   

4.
A series of Ca5(PO4)3F:Dy3+, Eu3+ phosphors was synthesized by a solid‐state reaction method. The XRD results show that all as‐prepared Ca5(PO4)3F:Dy3+, Eu3+ samples match well with the standard Ca5(PO4)3F structure and the doped Dy3+ and Eu3+ ions have no effect on the crystal structure. Under near‐ultraviolet excitation, Dy3+ doped Ca5(PO4)3F phosphor shows blue (486 nm) and yellow (579 nm) emissions, which correspond to 4F9/26H15/2 and 4F9/26H13/2 transitions respectively. Eu3+ co‐doped Ca5(PO4)3F:Dy3+ phosphor shows the additional red emission of Eu3+ at 631 nm, and an improved color rendering index. The chromaticity coordinates of Ca5(PO4)3F:Dy3+, Eu3+ phosphors also indicate the excellent warm white emission characteristics and low correlated color temperature. Overall, these results suggest that the Ca5(PO4)3F:Dy3+, Eu3+ phosphors have potential applications in warm white light‐emitting diodes as single‐component phosphor.  相似文献   

5.
A single-phase and optimized pure white light emitting Dy3+-doped and Dy3+/Mn2+ codoped Na3Y(PO4)2 phosphors (NYPO) were synthesized by traditional solid state reaction process. The as-synthesized phosphors were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectra and photoluminescence studies. The results suggested that the NYPO: Dy, Mn phosphors were crystallized in orthorhombic structures. The presence of dopants Dy and Mn was quantified by XPS analysis. All of the phosphors were effectively excited using a light of wavelength 351?nm and emissions in two regions, blue (~482?nm, 4F9/26H15/2) and yellow (~573?nm, 4F9/26H13/2), were obtained due to the f-f transitions of Dy3+ ions. The maximum intensities of Dy and Mn obtained were 0.07 and 0.05 for NYPO:Dy and NYPO:0.07Dy, Mn, respectively. The chromaticity coordinates, color temperatures, and color rendering indices of NYPO: 0.07Dy ((0.32, 0.33), 6194?K, and 48) and NYPO:0.07Dy, 0.05Mn phosphors ((0.33, 0.33), 5688?K, and 62) were determined. The energy transfer mechanism and oxygen vacancies that arise due to the introduction of Mn2+ ions in the NYPO:Dy phosphors, are responsible for the tuning of cool white light to pure day white light. The introduction of Mn in the Dy doped NYPO phosphor enhances the emission intensity in the phosphor.  相似文献   

6.
Novel LaMgAl11O19:Tm3+, Dy3+ phosphors were prepared utilizing a high‐temperature solid‐state reaction method. The phase formation, luminescence properties, energy‐transfer mechanism from the Tm3+ to the Dy3+ ions, the thermal stability, and CIE coordinates were investigated. When excited at 359 nm, the LaMgAl11O19: xTm3+ phosphors exhibit strong blue emission bands at 455 nm. After codoping with Dy3+ and excitation at 359 nm, the LaMgAl11O19:0.03Tm3+, yDy3+ phosphors emitted white light consisting of the characteristic emission peaks of Tm3+ and Dy3+. The Dy3+ emission intensity increased with the Dy3+ concentration due to the energy transfer from Tm3+ to Dy3+, and concentration quenching due to the high Dy3+ doping concentration (= 0.1 mol) did not occur. The calculation of the CIE coordinates of the LaMgAl11O19:Tm3+, yDy3+ phosphors revealed the tunability of the emission color from blue to bluish‐white and to white by changing the excitation wavelength and the doping concentration. An energy transfer from Tm3+ to Dy3+ by dipole–dipole interaction was confirmed by the decay curve, lifetime, and energy‐transfer efficiency measurements. When excited at 359 nm, the LaMgAl11O19:Tm3+, Dy3+ phosphor also showed good thermal stability, suggesting that it can be used in white LEDs excited by a GaN‐based ultraviolet LED.  相似文献   

7.
A hard template route has been successfully developed for synthesis of β‐SiAlON:Eu phosphors at low temperatures. The synthesis utilizes mesoporous silica (SBA‐15) skeleton as an active Si source, combined with the carbothermal reduction and nitridation method. It has been shown that the additional driving force from high surface area and porosity of SBA‐15 enables β‐SiAlON:Eu (with compositions of Si6?zAlz?xOz+xN8?z?x: xEu, x = 0.010–0.200 and z = 1.000) phosphors to be formed as a dominant phase at low temperature of 1400°C. The resultant β‐SiAlON:Eu phosphor powders exhibit a typical rod‐like morphology and a well dispersed state. By tailoring the Eu2+ concentration in the phosphors, a continuous change in emission band can be realized, that is a blue emission dominated for low Eu2+ concentrations and a green emission dominated for high Eu2+ doping concentrations. Furthermore, the resultant phosphors exhibit a small thermal quenching up to high temperature of 250°C. Therefore, the developed method is beneficial to synthesize LED phosphors of oxynitride systems at lower temperatures.  相似文献   

8.
Dy3+:Eu3+ doped calcium sulfate (CaSO4:Dy3+,Eu3+) phosphors co-doped with various K+ compensator concentrations were synthesized by recrystallization method. These orthorhombic phased phosphors showed intense multi-color near white light. The multi-color aspect ratios and the emission life times were strongly dependent on K+-concentration. These results suggest that the rare-earth (Re3+) ions are situated at the sites of Ca2+ and the site occupancy was being compensated by K+ ions. The near white light emission and large lifetimes suggest that present phosphor could be potentially applied as a blue excited white light-emitting phosphor for light emitting diodes.  相似文献   

9.
Dy3+–Tm3+ ions codoped SrMg2La2W2O12 (strontium magnesium lanthanum tungstate) phosphors were synthesized by conventional high‐temperature solid‐state reaction method. X‐ray analysis of the end products revealed the well‐crystallized phases with orthorhombic structure. The functional groups present in the phosphors were studied by the Fourier transform infrared measurements. To know the potential applicability of these phosphors for white light emission, the excitation and emission spectra were recorded. The excitation spectra exhibited an intense broad band at 313 nm, pertaining to the O → W ligand‐to‐metal charge‐transfer state (LMCT) of the host. With the excitation of LMCT band (313 nm), the decay curves of singly doped SrMg2La2W2O12:Dy phosphors exhibited single exponential, where as the codoped SrMg2La2W2O12:DyTm phosphors exhibited double exponential nature. The luminescence colors of these phosphors were estimated from Commission Internationale de L'Eclairage (CIE) coordinates using the photoluminescence data. The color of singly doped SrMg2La2W2O12:Dy phosphor has been tuned by codoping with Tm3+ ions. It has been noticed that the CIE chromaticity coordinates (x,y) determined from the luminescence spectrum of singly Dy3+ doped SrMg2La2W2O12 phosphor shifted toward the white light region, when codoped with Tm3+ ions. The increase in correlated color temperatures (Tcct) has been noticed with the increase of Tm3+ ions concentration in SrMg2La2W2O12:DyTm phosphors.  相似文献   

10.
Developing new phosphors used for ratiometric optical thermometers has attracted broad attention recently. According to the recent research, the phosphate SrIn2(P2O7)2 with regard to the structural rigidity has been adopted as the host of Tm and Dy activators behaving the super-stable white emission. Herein, Tm, Dy, Eu tri-doped phosphors were prepared to investigate the interaction of three different activators and their coupling sensitivity to temperature. Based on concentration control and energy transfer among three activators, the tunable emission, including the idea warm white, has been obtained. In the case of increasing temperature, the emission intensities of Dy3+ and Eu3+ partially decrease, whereas the Tm3+ fluorescence extremely keeps increasing to 155.4% of 473 K compared with that of room temperature. This phenomenon can be defined the negative thermal-quenching. It is believed that the back energy transfer (BET) from Dy3+ and that from Eu3+ to Tm3+ help the negative thermal-quenching of Tm3+ to a certain extent. Both cation occupation and structural rigidity obviously affect the BET efficiency. In the new phosphors, the fluorescence intensity ratios of Tm3+ and Eu3+ (blue/red) and (blue/orange) of Tm3+/Dy3+ are closely related to temperature and vary linearly over a wide temperature range, which can be regarded as an important index of temperature sensor. The SI1.92P: T0.01D0.01E0.06 shows excellent temperature sensitivity and recyclability. The current results show that SrIn2(P2O7)2: Tm, Dy, Eu phosphors can be regarded as candidate materials for optical thermometry.  相似文献   

11.
A series of novel red‐emitting Ca8ZnLa1?xEux(PO4)7 phosphors were successfully synthesized using the high‐temperature solid‐state reaction method. The crystal structure, photoluminescence spectra, thermal stability, and quantum efficiency of the phosphors were investigated as a function of Eu3+ concentration. Detailed analysis of their structural properties revealed that all the phosphors could be assigned as whitlockite‐type β‐Ca3(PO4)2 structures. Both the PL emission spectra and decay curves suggest that emission intensity is largely dependent on Eu3+ concentration, with no quenching as the Eu3+ concentration approaches 100%. A dominant red emission band centered at 611 nm indicates that Eu3+ occupies a low symmetry sites within the Ca8ZnLa(PO4)7 host lattice, which was confirm by Judd‐Ofelt theory. Ca8ZnLa1?xEux(PO4)7 phosphors exhibited good color coordinates (0.6516, 0.3480), high color purity (~96.3%), and high quantum efficiency (~78%). Temperature‐dependent emission spectra showed that the phosphors possessed good thermal stability. A white light‐emitting diode (LED) device were fabricated by integrating a mixture of obtained phosphors, commercial green‐emitting and blue‐emitting phosphors into a near‐ultraviolet LED chip. The fabricated white LED device emits glaring white light with high color rendering index (83.9) and proper correlated color temperature (5570 K). These results demonstrate that the Ca8ZnLa1?xEux(PO4)7 phosphors are a promising candidate for solid‐state lighting.  相似文献   

12.
The polycrystalline Eu2+ and Dy3+ codoped strontium aluminates SrAl2O4: Eu2+,Dy3+ were prepared by a solid-state reaction. The UV-excited photoluminescence, persistent luminescence, and thermoluminescence of the SrAl2O4: Eu2+,Dy3+ phosphors with different compositions and ion doping was studied and compared. The results showed that the Eu2+ ion doped in SrAl2O4: Eu2+,Dy3+ phosphors is not only the UV-excited luminescent center but also the persistent luminescent center. The Dy3+ ion introduced into SrAl2O4: Eu2+ crystal matrix can hardly yield any luminescence under UV excitation but acts as an electron trap with a suitable depth for persistent luminescence. The Dy3+ codoping would effectively enhance the persistent luminescence and thermoluminescence. Different codoping RE 3+ ions have a different effect on persistent luminescence. Only the RE 3+ ions (for example, Dy3+ and Nd3+), which have suitable optical electronegativity, can form suitable electron traps and effectively improve the persistent luminescence of SrAl2O4: Eu2+. Based on the above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated. The text was submitted by the authors in English.  相似文献   

13.
Superior optical, thermal, and mechanical properties of transparent ceramics are very important in the applications of solid lasers, solid‐state lighting, and transparent armors. Herein, a series of (Dy0.03CexY0.97?x)3Al5O12 transparent ceramics were fabricated using vacuum reactive sintering method. Importantly, these Dy3+/Ce3+ codoped yttrium aluminum garnet (YAG) transparent ceramics served as single‐composition tunable white‐light phosphors for UV‐LEDs is developed for the first time. By combining with commercially available UV‐LEDs directly, the optimal chromaticity coordinates and correlated color temperature (CCT) are (x = 0.33, y = 0.35) and 5609 K, respectively. Notably, the codoping of Ce3+ enhances the luminescent intensity of Dy3+ ions while excited at 327 nm. The emission color of YAG transparent ceramics can be tuned from white to yellow through energy transfer between Dy3+ and Ce3+. These new phosphors, possessing of pure CIE chromaticity and environmentally friendly nature, are promising for applications in white UV‐LEDs.  相似文献   

14.
The new red‐emitting phosphors of Eu3+‐doped triple orthovanadates NaALa(VO4)2 (= Ca, Sr, Ba) were prepared by the high‐temperature solid‐state reaction. The formation of single phase compound with isostructural structure of Ba3(VO4)2 was verified through X‐ray diffraction (XRD) studies. The photoluminescence excitation and emission spectra, the fluorescence decay curves and the dependence of luminescence intensity on doping level were investigated. The phosphor can be efficiently excited by near UV and blue light to realize an intense red luminescence (613 nm) corresponding to the electric dipole transition 5D07F2 of Eu3+ ions. Their potential applications as red‐emitting phosphors for solid‐state lighting were evaluated in comparison with the Eu3+‐doped lanthanum orthovanadate LaVO4 and other reported references. The luminescence was discussed in detail on the base of the crystal structures. The luminescence thermal stability on temperature was investigated and the thermal activated energy was calculated. The phosphors can be suggested to be a potential red‐emitting phosphor for the application on white LEDs under irradiation of near‐UV or blue chips.  相似文献   

15.
Recent studies have brought out many phosphors like Eu2+, Dy3+-doped alkaline earth aluminates. The trivalent Dy3+ ions as co-dopants greatly enhance the duration and intensity of persistent luminescence. These phosphors show excellent properties, such as high quantum efficiency, long persistence of phosphorescence, good stability and suitable color emission.In this work the effect of Al/Sr ratio on the afterglow and phosphorescence decay properties of Eu2+ and Dy3+ co-activated strontium aluminates synthesized by a solid-state process has been investigated. The luminescence properties of samples were investigated by means of excitation spectra, emission spectra and X-ray diffraction analysis.A variety of strontium aluminates, such as SrAl2O4, Sr4Al2O7, Sr3Al2O6, Sr3Al2(Eu, Dy, Y)O7.5, Al5(Eu, Dy, Y)O12, Sr4Al14O25, SrAl12O19 and (Eu, Dy, Y)AlO3 have been identified in the samples prepared from starting precursors with Al/Sr mole ratios ranging from 0.44 to 5. The afterglow decay rate was found to be the fastest for sample with Al/Sr ratio of 4.18, in which SrAl4O7 phase was dominant. The afterglow decay rate for phosphor with Al/Sr ratio of 2, in which SrAl2O4 phase was dominant, was detected to be slow. Moreover, the emission spectra of the samples shift to yellow-green long wavelength from bluish-green-ultraviolet short wave with the increase of Al/Sr ratios resulting from the change in the composition.  相似文献   

16.
A method is designed to improve the luminescence of AlN‐based phosphors by tuning the band structure and crystal structure due to alloying with GaN. The pure (Al,Ga)N:Eu phosphors were initially prepared by gas‐phase reaction in an NH3 atmosphere. GaN alloying was used to expand the crystal lattice of AlN due to Ga3+ substituting for smaller Al3+ ions, making dissolution of Eu2+ easier. The dissolution of Ga in the AlN lattice was proven by the result of the Rietveld refinement and the increase in lattice parameters with increasing Ga content. To introduce other energy states mixing with the 5d states of Eu2+, Ga doping was also used to tune the band structure of AlN by acting on Eu2+ ions. The theoretical result was analyzed using the Cambridge Sequential Total Energy Package (CASTEP). According to the calculated total and atom resolved partial density of states, it was observed that the Ga 5p states contribute a large portion to the corresponding Eu2+ absorption band in (Al,Ga)N:Eu phosphors. As a consequence, an enhanced emission intensity at 470 nm and a high quantum efficiency for excitation at 330 nm was obtained despite of stronger thermal quenching of the (Al,Ga)N:Eu phosphors compared with AlN:Eu.  相似文献   

17.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

18.
Ca2Gd8(SiO4)6O2 (CGS) nanophosphors with different concentrations of single-doped Dy3+ ions and co-doped Dy3+/Eu3+ ions were prepared by a solvothermal synthesis. Very fine particles in the nanometer range could be achieved by this method, as evidenced by transmission electron microscope measurements. The hexagonal phase of the oxyapatite structure was confirmed by X-ray diffraction patterns. The energy transfer between Eu3+ and Dy3+ ions was investigated by photoluminescence excitation and emission properties. These phosphors had absorption bands in the UV and NUV region, which are suitable for the emission wavelength of UV or NUV light-emitting diodes (LEDs). With increasing the Eu3+ ion concentration, the emission peak intensity corresponding to the 5D07F2 transition increased and the yellow (4F9/26H13/2) emission intensity also increased compared to the blue (4F9/26H15/2) emission intensity due to the increased energy transfer between Dy3+ to Eu3+ ions. Thus, the Eu3+ ions compensated the red emission component of the Dy3+ doped CGS nanophosphors. Such phosphors are expected to have potential applications for NUV based white LEDs.  相似文献   

19.
Dy3+‐activated Na3YSi2O7 phosphors have been prepared via a solid‐state reaction technique and may be used as a component of white light‐emitting diodes. X‐ray diffraction analysis demonstrates the single‐phase formation and the substitution of activator ions for Na3YSi2O7:Dy3+ materials. The emission of Dy3+ in different Y3+ lattice sites exhibits blue (4F9/26H15/2) and yellow (4F9/26H13/2) lights, which function together to generate white light. The optimum doping concentration is 3 mol% and energy transfer between Dy3+ ions has been validated to be a resonant type via an electric dipole–dipole mechanism. The temperature‐dependent luminescent properties from 25°C to 400°C are studied, and the blue emission increases as a function of the temperature. This interesting phenomenon is proposed to be the result of the model in the configurational coordination diagram. The present investigation reveals the potential application for Na3YSi2O7:Dy3+ system in solid‐state lighting.  相似文献   

20.
Tb3+‐doped and Eu2+, Tb3+ co‐doped Ca9Y(PO4)7 phosphors were synthesized by conventional solid‐state method. Additionally, the luminescence properties, decay behavior and energy transfer mechanism have already been investigated in detail. The green emission intensity of Tb3+ ions under NUV excitation is weak due to its spin‐forbidden f‐f transition. While Eu2+ can efficiently absorb NUV light and yield broad blue emission, most of which can be absorbed by Tb3+ ions. Thus, the emission color can be easily tuned from cyan to green through the energy transfer of Eu2+→Tb3+ in Ca9Y(PO4)7:Eu2+,Tb3+ phosphor. In this work, the phenomenon of cross‐relaxation between 5D3 and 5D4 are also mentioned. The energy transfer is confirmed to be resulted from a quadrupole‐quadrupole mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号