首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) manganites were prepared by a soft chemical method (Pechini method) followed by auto-combustion and sintering in air at 1073 or 1473 K. Single-phase powders with general composition Ca1−xSmxMnO3 were obtained after 18 h annealing. The particle and grain sizes of the substituted Sm-manganites did not exhibit variation with samarium content, but increase with increasing the sintering temperature. All manganites show two active IR vibrational modes near 400 and 600 cm−1 characteristic of the BO6 octahedron vibrations.For the samples sintered at Ts = 1473 K, the partial substitution of calcium by samarium in the CaMnO3 phase induces a marked decrease in the electrical resistivity, in the temperature range of 300-900 K, and at the same time a metal-to-insulator transition occurs; for Ts = 1073 K all the samples present semiconductor behaviour. With the increase of the annealing temperature the grain size increases and a metal-semiconductor transition appears. The results can be ascribed to the Mn4+/Mn3+ ratio and particle grain size. The effects of particle size on the electrical properties can be attributed to the domain status, changes in the Mn-O-Mn bond angle and Mn-O bond length.  相似文献   

2.
DyCuxGa2−x (x = 0-2.0) compounds have been synthesized; meanwhile, their crystal structure and magnetic properties have been investigated by X-ray diffraction and magnetic measurements. The result shows that the continuous solid-solution series crystallize in three phases, with the structure types of AlB2 (x = 0-0.2), DyCuGe (x = 0.3-0.6) and CeCu2 (x = 0.7-2.0), respectively. The main reason to form the three structure types is considered to be the average atomic radius ratio of R to Cu/Ga. Magnetic-ordering transition of the compounds with x = 0.2-0.6 takes place at about 20 K and 113 K, while those of other compounds only takes place at about 20 K, which is attributed to the change of the near Dy-Dy distances and the ordered substitution of Ga by Cu.  相似文献   

3.
We have studied the Mn 2p, Ca 2p, and Pr 4d core levels of Pr1-xCaxMnO3 (x = 0.2, 0.33, 0.4 and 0.84) as a function of x using X-ray photoelectron spectroscopy both at room temperature as well as 77 K. Suppression of chemical potential shifts have been observed at 77 K compared to that of room temperature spectra. We have discussed this result by considering the concept of phase separation.  相似文献   

4.
Delafossites CuY1−xCaxO2 (0 ≤x ≤0.10) ceramics have been prepared by solid state reaction using Cu2O, Y2O3 and CaCO3. Liquid phase sintering, which obviously accelerates the reaction speed of Cu2O-Y2O3-CaCO3 system and promotes the formation of CuYO2 phase is evidenced for the Ca-doped samples. During the sintering process, CuO can react with CaO to form two intermediate compounds, CaCu2O3 and Ca2CuO3, which decompose into CaO and liquid phase during 1273-1323 K. In the dopant range of 0 ≤x ≤0.10, both electrical conductivity and density of the samples are increased by Ca-doping. The room temperature conductivity of CuY0.94Ca0.06O2 is more than four orders of magnitude higher than that of CuYO2.  相似文献   

5.
The samples of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite were synthesized by solid state reaction method for studying thermoelectric properties. The properties of Seebeck coefficient, electrical conductivity and thermal conductivity were measured in the high temperature ranging from 300 to 960 K. The results of Seebeck coefficient, electrical conductivity and power factor were increased with increasing Pt substitution and temperature. The thermal conductivity was decreased from 5.8 to 3.5 W/mK with increasing the temperature from 300 to 960 K. An important results, the highest value of power factor and ZT is 2.0 × 10−4 W/mK2 and 0.05, respectively, for x = 0.05 at 960 K.  相似文献   

6.
Crystal structures and physical property measurements were determined for Tl10−xSnxTe6 with a phase range of 0 ≤ x ≤ 2.2. These tellurides are substitution variants of Tl5Te3. Electronic structure calculations indicate that Tl8Sn2Te6 should be an intrinsic semiconductor, and the Sn-poor variants, extrinsic ones with p-type conduction. The positive Seebeck values increase with increasing Sn content, while the electrical and thermal conductivity values decrease. Low thermal conductivity values, well below 1 W m−1 K−1, are the best asset of these materials with respect to thermoelectric performance. At x = 2.2, the best thermoelectric properties were obtained, with a figure-of-merit ZT = 0.60 at 617 K as determined on sintered cold-pressed pellets.  相似文献   

7.
We report on the room temperature strong (∼80%) electroresistance (ER) in the double perovskite with mixed Mn valence: Sr2−xGdxMnTiO6, 0 ≤ x ≤ 1. Both, continuous and pulsed current-voltage curves are almost identical which indicates that the observed electroresistance is not associated with heating. This is also supported by simultaneous temperature measurements. ER is negligible (absent) in the x = 0 compound and increases with the increase of Gd content ‘x’. The amplitude of ER has a maximum for x = 0.75, suggesting that ER is determined by both the double exchange and the Mn3+ concentration. At the same time, magnetic interactions change from the antiferromagnetic (x = 0) to ferromagnetic ones as x → 1, thus linking the ER with ferromagnetism.  相似文献   

8.
The PbSe1−xTex alloys with x = 0.2, 0.3, 0.5, 0.85 and 1.0 were prepared by induction melting, ball milling and spark plasma sintering techniques. The thermoelectric properties of the samples were investigated. The XRD analysis indicated that all samples are NaCl-type structure solid solutions Pb(Se,Te) containing nanograins. Increasing Te content resulted in increasing the lattice parameter a. The thermoelectric measurements show that all samples are n-type semiconductors in temperature range from 300 K to 673 K. The electrical resistivity of the doped sample is much smaller than that of pure PbSe, but comparable to that of PbTe. The absolute Seebeck coefficients for the doped sample PbSe1−xTex with x = 0.2, 0.3 and 0.5 range from 150 μV/K at 300 K to 250 μV/K at 673 K, which is much larger than that of pure PbSe (66-138 μV/K), but smaller than that of PbTe (230-310 μV/K) in the same experimental conditions. The thermal conductivity for the doped sample PbSe1−xTex with x = 0.2, 0.3 and 0.5 range from 0.95 to 0.66 W/m K, which is much smaller than that of pure PbSe (2.1-1.3 W/m K) or PbTe (1.4-1.1 W/m K). As a result, the figure of merit for the doped sample can be enhanced. The maximum dimensionless figure of merit ZT of 1.15 was obtained in the sample PbTe0.5Se0.5 at 573 K, more than 50% higher than that of pure PbTe prepared in the same condition.  相似文献   

9.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

10.
The effect of the composition on the electrical properties of BaBi1−xSbxO3 (0 ≤ x ≤ 0.5) negative temperature coefficient (NTC) thermistors was studied. Major phases present in the sintered bodies of BaBi1−xSbxO3 (0 < x < 0.5) ceramics were BaBi0.5Sb0.5O3 compounds with a rhombohedral structure and BaBiO3 compounds with a monoclinal structure. Most pores were located in the grains of BaBiO3 and BaBi0.5Sb0.5O3 ceramics. It was apparent that the ρ25 and B25/85 constant of the thermistors increased with increasing Sb content.  相似文献   

11.
The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1−xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor α-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature TC increases from 183 to 208 K, and the maximum magnetic entropy changes |ΔS| at the respective TC with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kg K for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1−xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher TC and the smaller hysteresis in comparison with those of the parent compound suggest that the La1−xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

12.
Sm0.5Sr0.5Co1−xFexO3 (0 ≤ x ≤ 0.5, SSCF) with perovskite-type structure has been successfully prepared by conventional solid-state reaction as a microwave and infrared multi-functional material. The effects of Fe incorporation on the structure, electrical conductivity, infrared emissivity and microwave-absorbing properties were investigated in detail. XRD results have shown that the perovskite structure of SSCF has an orthorhombic symmetry for 0 ≤ x ≤ 0.4 and a cubic symmetry for 0.5, respectively. The incorporation of Fe in SSCF could contribute to the decrease of electrical conductivity, while the infrared emissivities are increased. Moreover, microwave-absorbing properties in the frequency range of 2-18 GHz at room temperature are sensitive to Fe content. The complex permittivity, complex permeability and electromagnetic loss tangent have suddenly a step change at a certain frequency and the step-change frequency position moves slightly to lower frequencies with Fe increased. The optimal reflection loss calculated from the measured permittivity and permeability is 29.33 dB at 7.97 GHz with a thickness of 2.0 mm.  相似文献   

13.
The anisotropy compensation and magnetostrictive properties of Tb1−xHox(Fe0.8Co0.2)2 (0.60 ≤ x ≤ 1.0) alloys have been investigated. The easy magnetization direction (EMD) at room temperature rotates from the 〈1 1 1〉 axis (x ≤ 0.75) to the 〈1 0 0〉 axis (x ≥ 0.90) through an intermediate state 〈1 1 0〉, subjected to the anisotropy compensation between Tb3+ and Ho3+ ions. Composition anisotropy compensation is realized near x = 0.75. The Tb0.25Ho0.75(Fe0.8Co0.2)2 alloy has a minimum anisotropy and a large spontaneous magnetostriction coefficient λ111 (≈740 ppm) at room temperature. The strong 〈1 1 1〉-oriented 1-3 epoxy-bonded composite has been fabricated by curing under a moderate magnetic field. A high low-field magnetostriction of about 400 ppm at 3 kOe is obtained for the 1-3 epoxy/Tb0.25Ho0.75(Fe0.8Co0.2)2 composite with 40-vol% alloy particles, which can be attributed to the low magnetic anisotropy, EMD lying along 〈1 1 1〉 direction, the strong 〈1 1 1〉-textured orientation and the chain structure.  相似文献   

14.
Superconductors Ba1−xKxBiO3 and body-centered double perovskites Ba1−xKxBi1−yNayO3 have been selectively synthesized by a facile hydrothermal route. The appropriate ratio and adding sequence of initial reagents, alkalinity, reaction temperature and time are the critical factors that influence the crystal growth of the compounds. The purity and homogeneity of the crystals were detected by the ICP, SEM, EDX and TEM studies. Magnetic measurements show that the superconducting transition temperatures TC of Ba1−xKxBiO3 decrease from 22 K (for x = 0.35) to 8 K (for x = 0.55) with increasing the K doping level.  相似文献   

15.
A series of Gd100−xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys were prepared by arc-melting. The Curie temperature (TC) associated with the ferromagnetic-paramagnetic transitions, derived from M-T curves, show decrease in TC for as-cast alloys (∼279 K) as compared to as-cast Gd (∼292 K). No appreciable decrease in the |ΔSM|max values ∼4.6 J/kg K (0-2 T) and ∼8.6 J/kg K (0-5 T) were observed upon alloying Gd with Mn up to x ≤ 15 at.%. Refrigerant capacity (q) showed negligible variation ∼195 J/kg (0-2 T) and ∼450 J/kg (0-5 T) with increasing Mn (up to x ≤ 15 at.%) content. Similar values of |ΔSM|max and q coupled with ∼13 K decrease in TC for as-cast Gd100−xMnx (0 ≤ x ≤ 15) alloys as compared to Gd, suggests expansion of working temperature region of Gd upon alloying with Mn up to 15 at.%. Low cost, adjustable TC, favorable magnetocaloric properties make Gd100−xMnx alloys potential candidates as second-order transition based magnetic refrigerants for near room temperature air-conditioning and magnetic refrigeration.  相似文献   

16.
The synthesis, structural, magnetic and dielectric properties of a new type of high permittivity materials La2−xCaxNiO4+δ (x = 0, 0.1, 0.2, 0.3) (abbreviated as LCNs) were reported. The samples were prepared through conventional solid state reaction route. Detailed structural information was retrieved by Rietveld refinement; normalized bond length and bond valence was calculated to investigate the compression/dilation effect of bonds and atoms in unit cell. It can be found all samples belong to K2NiF4 structure with space group I4/mmm. Doping of Ca in La2NiO4+δ shrinks the unit cell and makes the structure tend to become instable. Three types of (La, Ca)-O bonds, and two kinds of Ni-O bonds exist in LCNs. Along c axis there are alternately compressed (La,Ca)O9 dodecahedra and lengthened NiO6 octahedra. Room temperature magnetic measurements show that the materials are paramagnetic and Ca doping can improve the spontaneous magnetization. Furthermore, all samples have colossal values of the dielectric constant (?) at frequencies lower than 1 kHz. Interestingly, La1.8Ca0.2NiO4+δ maintains its high permittivity at frequencies up to 1 MHz while La1.7Ca0.3NiO4+δ has the lowest dielectric loss (tan δ). Calcium doping can effectively enhance ? and inhibit tan δ. The distortion of (La,Ca)O9 dodecahedra can well explain their dielectric properties.  相似文献   

17.
Lead-free piezoelectric ceramics Sr2−xCaxNaNb5O15 + y wt% MnO2have been prepared by the conventional solid state reaction method. Our results reveal that Ca2+and Mn ions have entered into the Sr2NaNb5O15 lattices to form a solid solution with tungsten-bronze structure. The substitution of Ca2+ induces a decrease in piezoelectric coefficient d33, electromechanical coupling factors kp and kt, while, the addition of Mn ions decreases the sintering temperature and effectively promotes the densification of the ceramics. The effect of substitution of Ca2+and Mn ions on the structure, electrical properties and diffused phase changing were investigated systematically. For the ceramic with x = 0.05 and y = 0.5, the piezoelectric, dielectric and ferroelectric properties become optimum, giving a piezoelectric coefficient d33 = 190 pC/N, electromechanical coupling factors kp = 13.4% and kt = 36.5%, ?r = 2123, loss tangent tan δ = 0.038, remanent polarization Pr = 4.76 μC/cm2, coercive field Ec = 12.68 kV/cm, and Curie temperature Tc = 260 °C.  相似文献   

18.
The microstructure and electrochemical hydrogen storage characteristics of La0.7Mg0.3−xCaxNi2.8Co0.5 (x = 0, 0.05 and 0.10) alloys prepared by arc-melting and subsequent powder sintering method are investigated. The electrochemical measurement results show that the cycle stability after 100 charge/discharge cycles first increases from 46.4% (x = 0) to 54.3% (x = 0.05), then decreases to 43.2% (x = 0.10), and the high rate dischargeability increases from 64.5% (x = 0) to 68.5% (x = 0.10) at the discharge current density of 1200 mA/g. The electrochemical impedance spectroscopy analysis indicates that the electrochemical kinetics of the alloy electrodes is improved by increasing Ca. The entire results exhibit that a suitable content of Ca (x = 0.05) can improve the overall electrochemical hydrogen storage characteristics of the alloys.  相似文献   

19.
In this paper, the magnetic properties and magnetocaloric effect (MCE) of La0.7(Ca1−xAgx)0.3MnO3 (x = 0, 0.1, 0.2, 0.7, and 1) powder samples are reported. Our polycrystalline compounds were synthesized using the solid state reaction method at high temperature. Magnetization measurements versus temperature showed that all our samples exhibited a paramagnetic to ferromagnetic transition with decreasing temperature. The Curie temperature, TC, has been found to increase from ∼250 K for x = 0-270 K for x = 1. Ag doping weakens the first order phase transition, and at higher Ag doping, the phase transition is of second order. For the La0.7(Ca0.27Ag0.03)MnO3 composition, the maxima of the magnetic entropy changes from the applied magnetic field (ΔSM) at 2 and 5 T are about 4.5 and 7.75 J/kg K, respectively, at the Curie temperature of ∼263 K. The relative cooling power (RCP) values without hysteresis loss are about 102 and 271 J/kg for the applied fields of 2 and 5 T, respectively. Due to the large ΔSM, large RCP, and high Curie temperature, La0.7(Ca0.27Ag0.03)MnO3 is promising for application in potential magnetic refrigeration near room temperature.  相似文献   

20.
X-ray diffraction and transmission electron microscopy measurements of melt-spun Gd100−xFex (0 ≤ x ≤ 40) and inert-gas condensed/compacted samples (3.8 ≤ x ≤ 12.7) reveal a structure of crystalline hcp-Gd grains surrounded by a non-crystalline Gd1−xeffFexeff phase, where xeff > x is the effective iron concentration within the amorphous region. The two-phase structure is responsible for an unusual dependence of the coercivity on temperature in which non-zero coercivity is observed above the hcp-Gd Tc with a peak near 320 K. The coercivity decreases as the hcp-Gd grains order, then increases with decreasing temperature. This behavior is explained by the presence of magnetically correlated Fe-rich regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号