首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Side-weirs are flow diversion devices widely used in irrigation, land drainage, and urban sewage systems. It is essential to correctly predict the discharge coefficient for hydraulic engineers involved in the technical and economical design of side-weirs. In this study, the discharge capacity of triangular labyrinth side-weirs is estimated by using artificial neural networks (ANN). Two thousand five hundred laboratory test results are used for determining discharge coefficient of triangular labyrinth side-weirs. The performance of the ANN model is compared with multi nonlinear regression models. Root mean square errors (RMSE), mean absolute errors (MAE) and correlation coefficient (R) statistics are used as comparing criteria for the evaluation of the models’ performances. Based on the comparisons, it was found that the neural computing technique could be employed successfully in modelling discharge coefficient from the available experimental data. There were good agreements between the measured values and the values obtained using the ANN model. It was found that the ANN model with RMSE of 0.0674 in validation stage is superior in estimation of discharge coefficient than the multiple nonlinear and linear regression models with RMSE of 0.1019 and 0.1507, respectively.  相似文献   

2.
Side weirs are widely used for flow diversion in irrigation, land drainage, urban sewage systems and also in intake structures. It is essential to correctly predict the discharge coefficient for hydraulic engineers involved in the technical and economical design of side weirs. In this study, the discharge capacity of triangular labyrinth side weirs is estimated by using adaptive neuro-fuzzy inference system (ANFIS). Two thousand five hundred laboratory test results are used for determining discharge coefficient of triangular labyrinth side weirs. The performance of the ANFIS model is compared with multi nonlinear regression models. Root mean square errors (RMSE), mean absolute errors (MAE) and correlation coefficient (R) statistics are used as comparing criteria for the evaluation of the models’ performances. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modeling discharge coefficient from the available experimental data. There are good agreements between the measured values and the values obtained using the ANFIS model. It is found that the ANFIS model with RMSE of 0.0699 in validation stage is superior in estimation of discharge coefficient than the multiple nonlinear and linear regression models with RMSE of 0.1019 and 0.1507, respectively.  相似文献   

3.

Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient (C d). The aim of this study is accurate determination of the C d in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of C d predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination (R 2), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and δ have been used. Results showed that R 2 values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and δ values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model.

  相似文献   

4.
Side weirs are structures often used in irrigation techniques, sewer networks and flood protection. This study aims to obtain sharp-crested rectangular side weirs discharge coefficients in the straight channel by using artificial neural network model for a total of 843 experiments. The performance of the feed forward neural networks (FFNN) and radial basis neural networks (RBNN) are compared with multiple nonlinear and linear regression models. Root mean square errors (RMSE), mean absolute errors (MAE) and correlation coefficient (R) statistics are used for the evaluation of the models’ performances. Comparison results indicated that the neural computing techniques could be employed successfully in modeling discharge coefficient. The FFNN is found to be better than the RBNN. It is found that the FFNN model with RMSE of 0.037 in test period is superior in estimation of discharge coefficient than the multiple nonlinear and linear regression models with RMSE of 0.054 and 0.106, respectively.  相似文献   

5.
This study compares the daily potato crop evapotranspiration (ETC) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station and the Penman–Monteith FAO 56 standard approach (PMF-56), the daily ETC was determined during the growing season (April–September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ETC at desirable level of accuracy. However, the MNLR method with highest coefficient of determination (R 2 > 0.96, P value < 0.05) and minimum errors provided superior performance among the other methods.  相似文献   

6.
CFD simulation of free-surface flow over triangular labyrinth side weir   总被引:1,自引:0,他引:1  
Side weirs are extensively used in the hydraulic and environmental engineering applications. The modeling of free surface flow over a labyrinth side weir is a sophisticated problem in the hydraulic engineering. The water surface profiles over the triangular labyrinth side weirs were investigated by many of the researchers experimentally and theoretically. In this study, the free surface flow over the triangular labyrinth side weir was modeled by using Volume of Fluids (VOF) method to describe the flow characteristics in subcritical flow conditions. A valid method, Grid Convergence Index (GCI) was used to determine the numerical uncertainty of the simulation results. The simulation results were compared with experimental observations, and good agreements were obtained between the both results.  相似文献   

7.
The main purpose of the present study is to develop some artificial neural network (ANN) models for the prediction of limit pressure (P L) and pressuremeter modulus (E M) for clayey soils. Moisture content, plasticity index, and SPT values are used as inputs in the ANN models. To get plausible results, the number of hidden layer neurons in all models is varied between 1 and 5. In addition, both linear and nonlinear activation functions are considered for the neurons in output layers while a nonlinear activation function is employed for the neurons in the hidden layers of all models. Logistic activation function is used as a nonlinear activation function. During the modeling studies, total eight different ANN models are constructed. The ANN models having two outputs produced the worst results, independent from activation function. However, for P L, the best results are obtained from the feed-forward neural network with five neurons in the hidden layer, and logistic activation function is employed in the output neuron. For E M, the best model producing the most acceptable results is Elman recurrent network model, which has 4 neurons in the neurons in the hidden layer, and linear activation function is used for the output neuron. Finally, the results show that the ANN models produce the more accurate results than the regression-based models. In the literature, when empirical equations based on regression analysis were used, the best root mean square error (RMSE) values obtained to date for P L and E M have been 0.43 and 5.65, respectively. In this study, RMSE values for P L and E M were found to be 0.20 and 2.99, respectively, by using ANN models. It was observed that using ANN approach drastically increases the prediction accuracy in terms of RMSE criterion.  相似文献   

8.
In this study, the application of artificial neural networks (ANN) to predict the ultimate moment capacity of reinforced concrete (RC) slabs in fire is investigated. An ANN model is built, trained and tested using 294 data for slabs exposed to fire. The data used in the ANN model consists of seven input parameters, which are the distance from the extreme fiber in tension to the centroid of the steel on the tension side of the slab (d′), the effective depth (d), the ratio of previous parameters (d′/d), the area of reinforcement on the tension face of the slab (As), the fire exposure time (t), the compressive strength of the concrete (fcd), and the yield strength of the reinforcement (fyd). It is shown that ANN model predicts the ultimate moment capacity (Mu) of RC slabs in fire with high degree of accuracy within the range of input parameters considered. The moment capacities predicted by ANN are in line with the results provided by the ultimate moment capacity equation. These results are important as ANN model alleviates the problem of computational complexity in determining Mu.  相似文献   

9.
This study investigated the effects of upstream stations’ flow records on the performance of artificial neural network (ANN) models for predicting daily watershed runoff. As a comparison, a multiple linear regression (MLR) analysis was also examined using various statistical indices. Five streamflow measuring stations on the Cahaba River, Alabama, were selected as case studies. Two different ANN models, multi layer feed forward neural network using Levenberg–Marquardt learning algorithm (LMFF) and radial basis function (RBF), were introduced in this paper. These models were then used to forecast one day ahead streamflows. The correlation analysis was applied for determining the architecture of each ANN model in terms of input variables. Several statistical criteria (RMSE, MAE and coefficient of correlation) were used to check the model accuracy in comparison with the observed data by means of K-fold cross validation method. Additionally, residual analysis was applied for the model results. The comparison results revealed that using upstream records could significantly increase the accuracy of ANN and MLR models in predicting daily stream flows (by around 30%). The comparison of the prediction accuracy of both ANN models (LMFF and RBF) and linear regression method indicated that the ANN approaches were more accurate than the MLR in predicting streamflow dynamics. The LMFF model was able to improve the average of root mean square error (RMSEave) and average of mean absolute percentage error (MAPEave) values of the multiple linear regression forecasts by about 18% and 21%, respectively. In spite of the fact that the RBF model acted better for predicting the highest range of flow rate (flood events, RMSEave/RBF = 26.8 m3/s vs. RMSEave/LMFF = 40.2 m3/s), in general, the results suggested that the LMFF method was somehow superior to the RBF method in predicting watershed runoff (RMSE/LMFF = 18.8 m3/s vs. RMSE/RBF = 19.2 m3/s). Eventually, statistical differences between measured and predicted medians were evaluated using Mann-Whitney test, and differences in variances were evaluated using the Levene's test.  相似文献   

10.
This study presents forecast of highway casualties in Turkey using nonlinear multiple regression (NLMR) and artificial neural network (ANN) approaches. Also, the effect of railway development on highway safety using ANN models was evaluated. Two separate NLMR and ANN models for forecasting the number of accidents (A) and injuries (I) were developed using 27 years of historical data (1980–2006). The first 23 years data were used for training, while the remaining data were utilized for testing. The model parameters include gross national product per capita (GNP-C), numbers of vehicles per thousand people (V-TP), and percentage of highways, railways, and airways usages (TSUP-H, TSUP-R, and TSUP-A, respectively). In the ANN models development, the sigmoid and linear activation functions were employed with feed-forward back propagation algorithm. The performances of the developed NLMR and ANN models were evaluated by means of error measurements including mean absolute percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). ANN models were used for future estimates because NLMR models produced unreasonably decreasing projections. The number of road accidents and as well as injuries was forecasted until 2020 via different possible scenarios based on (1) taking TSUPs at their current trends with no change in the national transport policy at present, and (2) shifting passenger traffic from highway to railway at given percentages but leaving airway traffic with its current trend. The model results indicate that shifting passenger traffic from the highway system to railway system resulted in a significant decrease on highway casualties in Turkey.  相似文献   

11.
A new wavelet-support vector machine conjunction model for daily precipitation forecast is proposed in this study. The conjunction method combining two methods, discrete wavelet transform and support vector machine, is compared with the single support vector machine for one-day-ahead precipitation forecasting. Daily precipitation data from Izmir and Afyon stations in Turkey are used in the study. The root mean square errors (RMSE), mean absolute errors (MAE), and correlation coefficient (R) statistics are used for the comparing criteria. The comparison results indicate that the conjunction method could increase the forecast accuracy and perform better than the single support vector machine. For the Izmir and Afyon stations, it is found that the conjunction models with RMSE=46.5 mm, MAE=13.6 mm, R=0.782 and RMSE=21.4 mm, MAE=9.0 mm, R=0.815 in test period is superior in forecasting daily precipitations than the best accurate support vector regression models with RMSE=71.6 mm, MAE=19.6 mm, R=0.276 and RMSE=38.7 mm, MAE=14.2 mm, R=0.103, respectively. The ANN method was also employed for the same data set and found that there is a slight difference between ANN and SVR methods.  相似文献   

12.
This paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2WBANN=0.9397, R2WGBANN=0.9528).  相似文献   

13.

This study aims to identify the suitability of hybridizing the firefly algorithm (FA), genetic algorithm (GA), and particle swarm optimization (PSO) with two well-known data-driven models of support vector regression (SVR) and artificial neural network (ANN) to predict blast-induced ground vibration. Here, these combinations are abbreviated using FA–SVR, PSO–SVR, GA–SVR, FA–ANN, PSO–ANN, and GA–ANN models. In addition, a modified FA (MFA) combined with SVR model is also proposed in this study, namely, MFA–SVR. The feasibility of the proposed models is examined using a case study, located in Johor, Malaysia. Then, to provide an objective assessment of performances of the predictive models, their results were compared based on several well known and popular statistical criteria. According to the results, the MFA–SVR with the coefficient of determination (R2) of 0.984 and root mean square error (RMSE) of 0.614 was more accurate model to predict PPV than the PSO–SVR with R2 = 0.977 and RMSE = 0.725, the FA–SVR with R2 = 0.964 and RMSE = 0.923, the GA–SVR with R2 = 0.957 and RMSE = 1.016, the GA–ANN with R2 = 0.936 and RMSE = 1.252, the FA–ANN with R2 = 0.925 and RMSE = 1.368, and the PSO–ANN with R2 = 0.924 and RMSE = 1.366. Consequently, the MFA–SVR model can be sufficiently employed in estimating the ground vibration, and has the capacity to generalize.

  相似文献   

14.
Discharge coefficient, Cd is a crucial parameter for film cooling. In the present work, the effects of various contributing factors on the discharge coefficient of cylindrical holes were studied numerically. Effects of the mainstream Mach number, flow turbulence, shock wave, jet inclination angel and the pressure ratio of the flows were concerned. Comparison against the test data shows the modeling is capable to present accurate solutions for the predicted objective. Results indicate that the pressure fields as well as the velocity distributions above the jets are vulnerable to the change of the above mentioned factors and can further exert impact on the discharge coefficient. An increase in Mach number of the external flow from 0.6 to 1.2 leads to a reduction in discharge coefficient by more than 50%. Smaller inclination angle can weaken the orthogonal interaction between the mainstream and the coolant flow, thus can mitigate the reduction in Cd caused by the high Mach number of the external flow.  相似文献   

15.
Flood prediction is an important for the design, planning and management of water resources systems. This study presents the use of artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), multiple linear regression (MLR) and multiple nonlinear regression (MNLR) for forecasting maximum daily flow at the outlet of the Khosrow Shirin watershed, located in the Fars Province of Iran. Precipitation data from four meteorological stations were used to develop a multilayer perceptron topology model. Input vectors for simulations included the original precipitation data, an area-weighted average precipitation and antecedent flows with one- and two-day time lags. Performances of the models were evaluated with the RMSE and the R 2. The results showed that the area-weighted precipitation as an input to ANNs and MNLR and the spatially distributed precipitation input to ANFIS and MLR lead to more accurate predictions (e.g., in ANNs up to 2.0 m3 s?1 reduction in RMSE). Overall, the MNLR was shown to be superior (R 2 = 0.81 and RMSE = 0.145 m3 s?1) to ANNs, ANFIS and MLR for prediction of maximum daily flow. Furthermore, models including antecedent flow with one- and two-day time lags significantly improve flow prediction. We conclude that nonlinear regression can be applied as a simple method for predicting the maximum daily flow.  相似文献   

16.
ABSTRACT

Chlorophyll-a (chl-a) serves as an indicator of productivity in surface water. Estimating chl-a concentration is pivotal for monitoring and subsequent conservation of surface water quality. Artificial neural network (ANN) based models were validated and tested for their efficacy against various regression models to determine the chl-a concentration in the Upper Ganga river. Landsat-8 Operational Land Imager (OLI) surface reflectance (SR) imagery for May and October along with in-situ data over a period of 2 years (2016–2017) was used to develop and validated models. Regression model performance was acceptable with a coefficient of determination (R2) of 0.57, 0.63, 0.66 and 0.68 for linear, exponential, logarithmic and power model, respectively. However, there was a significant improvement in the efficacy of chl-a determination using ANN model performance having a root mean square error (RMSE) of 1.52 µg l–1 and R2 = 0.97 in comparison to the best-performing regression model (power) with RMSE = 9.86 µg l–1 and R2 = 0.68. ANN exhibited comparatively more precise spatial and seasonal variability with mean absolute error (MAE) of 1.26 µg l–1 as compared to the best regression model (power) MAE = 7.98 µg l–1 suggesting the applicability of ANN for large-scale spatial and temporal monitoring river stretches using Landsat-8 OLI SR images.  相似文献   

17.
High voltage insulators form an essential part of the high voltage electric power transmission systems. Any failure in the satisfactory performance of high voltage insulators will result in considerable loss of capital, as there are numerous industries that depend upon the availability of an uninterrupted power supply. The importance of the research on insulator pollution has been increased considerably with the rise of the voltage of transmission lines. In order to determine the flashover behavior of polluted high voltage insulators and to identify to physical mechanisms that govern this phenomenon, the researchers have been brought to establish a modeling. Artificial neural networks (ANN) have been used by various researches for modeling and predictions in the field of energy engineering systems. In this study, model of VC = f (H, D, L, σ, n, d) based on ANN which compute flashover voltage of the insulators were performed. This model consider height (H), diameter (D), total leakage length (L), surface conductivity (σ) and number of shed (d) of an insulator and number of chain (n) on the insulator.  相似文献   

18.
《Applied Soft Computing》2013,13(1):109-115
This paper applies a generalized regression neural network (GRNN) for predicting the friction coefficient of deposited Cr1−xAlxC films on high-speed steel substrates via direct current magnetron sputtering systems. The Cr1−xAlxC films exhibited some excellent characteristics, such as low friction coefficient, high hardness, and large contact angle. In this study, a GRNN model is applied for predicting the friction coefficient of Cr1−xAlxC films on high-speed steel substrates instead of complex practical experiments. The results exhibit good prediction accuracy of friction coefficient since about ±0.97% average errors and show the feasibility of the prediction model. Compared to the conventional back propagation model, the GRNN model is more suitable to predict the friction coefficient of Cr1−xAlxC films.  相似文献   

19.
Modeling the glass-forming ability (GFA) of bulk metallic glasses (BMGs) is one of the hot issues ever since bulk metallic glasses (BMGs) are discovered. It is very useful for the development of new BMGs for various engineering applications, if GFA criterion modeled precisely. In this paper, we have proposed support vector regression (SVR), artificial neural network (ANN), general regression neural network (GRNN), and multiple linear regression (MLR) based computational intelligent (CI) techniques that model the maximum section thickness (Dmax) parameter for glass forming alloys. For this study, a reasonable large number of BMGs alloys are collected from the current literature of material science. CI models are developed using three thermal characteristics of glass forming alloys i.e., glass transition temperature (Tg), the onset crystallization temperature (Tx), and liquidus temperature (Tl). The R2-values of GRNN, SVR, ANN, and MLR models are computed to be 0.5779, 0.5606, 0.4879, and 0.2611 for 349 BMGs alloys, respectively. We have investigated that GRNN model is performing better than SVR, ANN, and MLR models. The performance of proposed models is compared to the existing physical modeling and statistical modeling based techniques. In this study, we have investigated that proposed CI approaches are more accurate in modeling the experimental Dmax than the conventional GFA criteria of BMGs alloys.  相似文献   

20.
This research presents several non-linear models including empirical, artificial neural network (ANN), fuzzy system and adaptive neuro-fuzzy inference system (ANFIS) to estimate air-overpressure (AOp) resulting from mine blasting. For this purpose, Miduk copper mine, Iran was investigated and results of 77 blasting works were recorded to be utilized for AOp prediction. In the modeling procedure of this study, results of distance from the blast-face and maximum charge per delay were considered as predictors. After constructing the non-linear models, several performance prediction indices, i.e. root mean squared error (RMSE), variance account for (VAF), and coefficient of determination (R 2) and total ranking method are examined to choose the best predictive models and evaluation of the obtained results. It is obtained that the ANFIS model is superior to other utilized techniques in terms of R 2, RMSE, VAF and ranking herein. As an example, RMSE values of 5.628, 3.937, 3.619 and 2.329 were obtained for testing datasets of empirical, ANN, fuzzy and ANFIS models, respectively, which indicate higher performance capacity of the ANFIS technique to estimate AOp compared to other implemented methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号