首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
液相浸渗用多孔预制体制备的研究现状   总被引:3,自引:0,他引:3  
多孔预制体是用液相浸渗法制备金属基复合材料最重要的组成部分,通过调节多孔预制体的孔隙率和孔结构,可以获得不同性能和组织的金属基复合材料,即多孔预制体是保证复合材料可设计性的前提。综述了各种类型的液相浸渗用多孔预制体的制备工艺,对液相浸渗用多孔预制体制备的研究现状进行了全面的评述,分析了成形压力、烧结规范、粘结剂、造孔剂及后续处理等因素对液相浸渗用多孔预制体质量产生的影响。  相似文献   

2.
Si3N4/Al-Mg复合材料的无压浸渗制备技术   总被引:3,自引:0,他引:3  
用β-Si3N4纳米颗粒浆料浸渍多孔聚合物材料,通过加热烧蚀掉聚合物,制备出三维空间连续网络结构预制块体,再通过无压浸渗将已熔炼好的铝液浸渗到预制体中,成功制备出陶瓷与金属相互贯穿的Si3N4/Al金属基复合材料。利用座滴定法测试了Al在Si3N4基片上的润湿角,分析了润湿角与浸渗温度的关系。适量镁元素的存在,在Si3N4/Al界面发生微化学放热反应,降低了表面张力,使润湿角大大减小,从而促进了自发浸渗的进行。  相似文献   

3.
无压浸渗制备Si3N4/Al复合材料的工艺与抗弹性能研究   总被引:5,自引:0,他引:5  
利用铝镁合金无压渗入氮化硅多孔预制体的方法制得致密的富含有氮化铝相的陶瓷金属基复合材料,并分别就 热处理温度和浸渗温度对复合材料的显微组织、相组成和显微硬度的影响进行了观察和测定。试验发现浸渗温度越高或 热处理温度越高,则复合材料中AlN相含量越高;弹击试验显示该复合材料的局部效益系数比LC52提高一倍以上。  相似文献   

4.
介绍SiCAl复合材料,综述了国内外SiCAl电子封装材料及构件所涉及的无压浸渗,粉末注射成型,共喷射沉积等多种制备工艺;并分析各种方法的优缺点,指出SiCAl制备方法的发展趋势。  相似文献   

5.
介绍SiCAl复合材料,综述了国内外SiCAl电子封装材料及构件所涉及的无压浸渗,粉末注射成型,共喷射沉积等多种制备工艺;并分析各种方法的优缺点,指出SiCAl制备方法的发展趋势。  相似文献   

6.
通过高温烧结TiC陶瓷骨架,金属Cu熔体真空无压自浸渗,制备出高致密度(>98%理论密度)的TiC-40%Cu(质量分数)金属陶瓷复合材料。对材料微观结构分析表明,在复合材料中TiC形成了连续的骨架结构,金属Cu填充到TiC骨架的孔隙中。材料的高温烧蚀试验结果表明,TiC/Cu复合材料在烧蚀过程中产生了“发汗冷却”效果,抗烧蚀性能与W/Cu材料相近,抗热震性比W/Cu材料差。TiC/Cu复合材料作为耐高温、抗烧蚀材料有实际应用前景。  相似文献   

7.
SiC/SiC复合材料具有耐高温、低密度、抗氧化、抗热震、耐烧蚀等特性,被广泛地应用于航空、航天、能源、交通等领域。简单介绍了SiC陶瓷、SiC/SiC复合材料,并综述了前驱体浸渍热解技术(PIP)、化学气相渗透技术(CVI)、浆料浸渗-热压技术(SI-HP)和反应性熔体浸渗技术(RMI)制备SiC/SiC复合材料的研究进展。  相似文献   

8.
浸渗法制备颗粒增强铝基复合材料研究   总被引:5,自引:0,他引:5  
采用廉价SiO2 原料,利用浸渗方法获得了Al2O3/Al复合材料。研究表明:熔融铝合金可在空气中自动浸入SiO2,无需真空或外加压力;自浸渗过程与铝合金成分无关;SiO2 坯体中助渗剂不是浸渗的控制条件。实验还分析讨论了浸渗温度,浸渗时间和SiO2 颗粒大小等因素对浸渗过程的影响  相似文献   

9.
一种新型氮化铝基复合材料的弹击损伤特征研究   总被引:5,自引:1,他引:4  
无压反应浸渗制备的Si3N4/AIN-Al复合材料是一种新型的氮化铝基复合材料,本文采用压缩空气炮发射钨合金球垂直侵彻复合材料/铝复合靶,对侵彻后的复合材料的宏、微观损伤形貌进行了观察,并对复合材料的失效机制进行了分析。结果表明:弹击损伤后复合材料断口中存在压缩摩擦损伤、高速剪切失效和动态拉伸断裂三种形貌;破碎区陶瓷碎块间的压缩摩擦过程,涉及复合材料内陶瓷骨架的破碎、骨架内的铝合金局部高速变形并摩擦发热的复杂作用,在抵抗钨球侵彻的过程中起到特有的耗能作用。  相似文献   

10.
刹车材料的成分和结构设计影响其性能及服役寿命。从碳纤维增强复合刹车材料的性能要求出发,对基体改性的应用现状、改性填料的引入方法进行系统详细的论述,并展望了新型复合刹车材料的发展思路及浆料法浸渗三维纤维预制体引入改性填料的发展方向。  相似文献   

11.
莫来石/钛酸铝层状复合材料的制备   总被引:1,自引:0,他引:1  
采用轧膜成型和热压烧结工艺,以莫来石为基体层,钛酸铝为界面分隔层制备了陶瓷基层状复合材料,研究了层状复合材料的力学性能、显微结构、应力应变行为和断裂机制。结果表明,利用钛酸铝强度低的特点,以此作为陶瓷基层状复合材料的界面分隔层是可行的。与块体莫来石陶瓷相比,复合材料的强度有所降低,但断裂韧性提高;断口形貌观察和分析表明莫来石/钛酸铝层状复合材料在界面区域发生裂纹偏转,表现为非脆性断裂。  相似文献   

12.
叶腾钶  徐豫新  武岳  任云燕 《兵工学报》2021,42(7):1471-1481
为支撑新型轻质防弹装甲材料的研发和优化,以添加和未添加增韧相TiB2的两种石墨烯改性碳化硼(B4C)陶瓷复合材料为研究对象,研究其在12.7 mm口径穿甲弹侵彻下的失效机理。利用维氏硬度计、三点弯曲法和单边切口梁法获得两种陶瓷基复合材料的维氏硬度、弯曲强度和断裂韧性3个准静态力学性能参数,通过残余穿深试验研究两种复合材料在12.7 mm口径穿甲弹正侵彻下的抗侵彻能力,并采用防护系数进行定量表征。结合铝合金背板和陶瓷碎块的宏观损伤形貌,利用扫描电镜进行微观断口分析,研究陶瓷在弹头侵彻下的失效机理、增韧相TiB2以及石墨烯的强化机制。结果表明:TiB2的加入可以提高石墨烯改性B4C陶瓷的各项性能,相较不含TiB2的石墨烯改性B4C陶瓷,含质量分数14%TiB2改性B4C陶瓷的维氏硬度、弯曲强度和断裂韧性分别提高了19.66%、24.06%和19.70%,在12.7 mm口径穿甲弹弹头750 m/s速度侵彻下的防护性能提高15.11%;对于石墨烯改性B4C陶瓷,TiB2的加入与石墨烯的促进作用使B4C陶瓷变为多种破坏吸能模式,表现出更优异的抗破碎性,是其抗侵彻性能等提高的主要原因。  相似文献   

13.
合金元素影响铝/陶瓷界面润湿性的研究现状   总被引:16,自引:1,他引:16  
在基体中添加合金元素是目前国内外改善金属/陶瓷界面润湿性的最广泛的方法之一。本文综述了合金元素影响Al/Al2O3界面和Al/SiC界面润湿性的研究现状,着重分析了合金元素Mg、Si、Cu、稀土等对Al/Al2O3界面和Al/SiC界面润湿性的影响,讨论了研究中存在的若干问题  相似文献   

14.
纤维含量对C_f/SiC复合材料力学性能和断裂机理的影响   总被引:1,自引:0,他引:1  
为实现碳化硅复合材料减重和增韧的双重目的,以Al2O3和Y2O3为烧结助剂,利用真空热压烧结工艺制备了短切碳纤维增强碳化硅复合材料。结果表明:烧结过程中,烧结助剂Al2O3、Y2O3之间发生化学反应,促进液相烧结,形成晶界间的次晶相YAG(3 Y2O3.5Al2O3),有利于提高复合材料的断裂韧性;在较高烧结温度下,碳纤维、烧结助剂与基体间发生反应,形成较强结合界面;纤维拔出、裂纹偏转和晶粒桥联是碳化硅陶瓷的主要增韧机制。  相似文献   

15.
反应粘接碳化硅材料接头的研究   总被引:1,自引:0,他引:1  
用反应粘接的方法获得了反应烧结碳化硅材料之间、反应烧结碳化硅和重结晶碳化硅材料间的连接。分析了反应粘接碳化硅材料接头的形成机理 ,分别在光学显微镜、扫描电镜下观察了连接区的显微组织和断口形貌 ,评价了反应粘接硅 /碳化硅材料接头的力学和电性能。研究结果表明 ,反应粘接可以使母材间形成良好的接合界面 ,连接层未对整体材料的强度和电阻率造成明显的影响。优化接合面的组织和成分是获得碳化硅材料优异连接性能的关键  相似文献   

16.
短纤维增强铝硅合金复合材料的组织与断口形貌分析   总被引:2,自引:0,他引:2  
研究了挤压铸造氧化铝短纤维增强铝硅合金复合材料的凝固组织和断口形貌.结果表明,在复合材料中纤维分布均匀,氧化铝纤维可作为硅相非自发形核的衬底;氧化铝纤维与铝合金基体之间的界面对材料性能影响很大.改善制备工艺应从控制界面反应和细化组织入手.  相似文献   

17.
碳化硅料浆分散特性研究   总被引:1,自引:0,他引:1  
采用低分子量的聚乙烯亚胺作为分散剂,制备稳定性好的碳化硅水基悬浮液。着重分析pH值、分散剂含量、固相含量以及表面改性处理等因素对碳化硅悬浮液分散特性的影响,试验确定聚乙烯亚胺的最佳用量。对碳化硅粉体进行表面处理,使得碳化硅悬浮液最大固相含量体积分数从44%提高到54%(表观黏度小于1Pa·s)。  相似文献   

18.
借助扫描电镜(SEM)、能谱分析(EDS)、X射线衍射仪(XRD)、显微硬度仪等分析手段和电化学实验研究了纳米ZnO颗粒对新型铸造铝合金表面生成的微弧氧化膜层的影响。结果表明,纳米ZnO颗粒参与了铝合金表面的微弧氧化成膜过程,陶瓷膜层的厚度、硬度和耐蚀性能均有明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号