首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To obtain a strong bond between W coatings and the substrate, a novel graded tungstenised layer on Ti-Al-Nb alloys was produced using a double glow plasma surface alloying technology and a special graded tribological coating was designed. The microstructural results showed that the tungstenised layer was distributed in a graded manner and was mainly comprised of W- or Ti-rich TixW1?x phases. Varying the friction conditions indicated that an increase in the load and sliding speed led to an increase of the friction coefficient and wear rate of the tungstenised layer at room temperature. These changes were mainly caused by the graded distribution of the W composition and the change in surface contact status. The results indicated that the friction and wear properties of Ti-Al-Nb alloys were greatly improved by the surface tungstenising.  相似文献   

2.
Plasma-based low-energy nitrogen ion implantation, including plasma source ion nitriding/carburizing and plasma source low-energy ion enhanced deposition, has emerged as a low-temperature surface engineering technique for metal and alloy. In this paper, the pure metal Ti samples have been modified by the plasma source ion nitriding process at a process temperature of 700 °C for a processing time of 4 h. The nitrided Ti surfaces were constructed of a continuous and dense Ti2N compound layer about 2 μm thick and a 7-8 μm diffused layer. During tribological test on a ball on disk tribometer against the Si3N4 ceramic counterface, a low friction coefficient of about 0.3 and the faint wear volume were obtained for the nitrided Ti samples. The cyclic polarization curves of the nitrided Ti samples in 3.5% and 6.0% NaCl solutions showed that the improved pitting corrosion resistance with an increase of corrosion potential and a decrease of passive current, compared with that of the unnitrided Ti sample. The plasma source ion nitriding of the Ti samples provided the engineering surfaces for the functional applications with the combined improvement in wear and corrosion resistance.  相似文献   

3.
In this study, a-C:Ti x% coatings with various levels of Ti addition are deposited on cemented tungsten carbide (WC-Co) substrates using a medium-frequency twin magnetron sputtering and unbalanced magnetron sputtering system. This study investigates the tribological properties of the coatings by conducting wear tests against an AISI 1045 steel counterbody under a cylinder-on-disk line contact wear mode using an oscillating friction and wear tester. Additionally, turning tests and high-speed through-hole drilling tests are performed on AISI 1045 steel counterbodies and PCB workpieces, respectively, to investigate the machining performance of coated turning cutters and microdrills. The a-C:Ti x% coatings not only have improved tribological properties but also demonstrate enhanced machining performance. For sliding against the AISI 1045 steel counterbody under loads of 10 and 100 N, the results show that the optimal friction and wear resistance properties are provided by the a-C:Ti13% and a-C:Ti3% coatings, respectively. Meanwhile, the a-C:Ti20% and a-C:Ti51% coatings yield the optimal turning and drilling performance, respectively.  相似文献   

4.
Titanium alloys are characterized by poor tribological properties, and the traditional use of titanium alloys has been restricted to nontribological applications. The deposition of a well adherent diamond coating is a promising way to solve this problem. In this study, the tribological properties of diamond-coated titanium were studied using a pin-on-disk tribometer, and the results were compared with those of pure titanium and plasma nitrided titanium. The tribological behavior of pure titanium was characterized by high coefficient of friction and rapid wear of materials. Plasma nitriding improved the wear resistance only under low normal load; however, this hardened layer was not efficient in improving the wear resistance and the friction properties under high normal load. Diamond coating on pure titanium improved the wear resistance of titanium significantly. Surface profilometry measurement indicated that little or no wear of the diamond coating occurred under the test conditions loads. The roughness of the diamond coating was critical because it controlled the amount of abrasive damage on the counterface. Reducing the surface roughness by polishing led to the reductions in both the friction and wear of the counterface.  相似文献   

5.
Three PVD nitride coatings (TiN, Ti55Al45N, and Ti35Al65N) with different Al content were deposited on the cemented carbides by cathode arc-evaporation technique. Microstructural and fundamental properties of these nitride coatings were examined. The friction and wear behavior of these coatings were evaluated at temperatures up to 600 °C. The wear surface features of the test samples were examined by scanning electron microscopy. Results showed that the friction coefficient of these nitride coatings is different depending on the temperature. The friction coefficient of TiN coating increased with the increase of test temperature; while the friction coefficient of Ti55Al45N and Ti35Al65N coatings with the addition of Al decreased with the increase of test temperature. The Ti55Al45N and Ti35Al65N coatings exhibited higher wear resistance over the one without Al (TiN coating). The wear resistance of these nitride coatings at high temperature wear tests is significantly dependent on their tribological oxidation behavior. The Ti55Al45N and Ti35Al65N coatings with the addition of Al exhibited improved wear resistance as compared to the TiN coating, which was attributed to that their tribo-chemically formed Al2O3 exhibited better tribological properties than the TiO2 of the latter.  相似文献   

6.
Structural transformations and tribological properties of a Ti49.4Ni50.6 alloy have been investigated at the liquid-nitrogen temperature. It has been shown that the alloy under study possesses the resistance to abrasive and adhesive wear smaller by a factor of 1.4–1.7 and the friction coefficient that is (to 1.7 times) higher, as compared to the austenitic steel 12Kh18N9. The only moderate tribological properties of the titanium nickelide are caused by an enhanced brittleness of this material under the conditions of friction-initiated severe plastic deformation. The enhanced low-temperature brittleness of the martensitic structure is seemingly explained by a low symmetry of the crystal lattice of the B19’ martensite, an atomically ordered state of this phase, and the formation of a brittle amorphous phase in the layer several microns thick near the friction surface of the alloy. The appearance of a continuous amorphous layer at the friction surface of the titanium nickelide is favored by the presence of the martensitic structure in the alloy, its stability under the friction conditions with respect to the reverse B19′ → B2 transformation, and a high intensity of the deformation processes occurring in the zone of friction contact. Below the amorphous layer, a mixed amorphous-crystal-line structure is located. The nanocrystallites are textured and range in size from a few to tens of nanometers. The formation of crystallites of the B2 phase in the amorphized layer appears to occur at the stage of warming of the alloy samples to room temperature. A similar amorphous-nanocrystalline structure arises near the abrasive-wear surface of the Ti49.4Ni50.6 alloy. It has been shown that the presence of a submicrocrystalline structure in the initial Ti49.4Ni50.6 alloy exerts no significant effect on the tribological properties and the character of structural transformations induced in the alloy by the frictional action.  相似文献   

7.
目的提高F51双相不锈钢的硬度以及耐磨性能。方法将F51双相不锈钢进行低温(450℃)和高温(550℃)离子渗氮处理,利用光学显微镜(OM)、扫描电子显微镜(SEM)观察F51双相不锈钢渗氮层的微观组织,利用X射线衍射(XRD)方法对渗氮层沿深度方向相组成的变化进行分析,采用显微硬度计、摩擦磨损实验机分别对渗氮层的显微硬度及耐磨性能进行测试,采用激光扫描共聚焦显微镜(LSCM)对磨痕形貌进行观察。结果F51双相不锈钢低温渗氮层主要由N相组成,由表及里为N N+N(少量);高温渗氮层主要由CrN+N相组成,由表及里为CrN+N N+N。高温渗氮层厚度约为低温渗氮层厚度的3倍。低温渗氮样品的平均表面硬度约为基体表面硬度的3.5倍;高温渗氮样品的平均表面硬度约为基体硬度的4倍。基体的摩擦系数约为0.71,低温和高温渗氮处理后样品的摩擦系数大大降低,分别为0.24和0.17。渗氮样品磨痕的宽度和深度较基体显著降低。结论F51双相不锈钢低温渗氮层主要由N相组成,高温渗氮层主要由CrN+N相组成,两种温度渗氮后的样品硬度和耐磨性均得到显著提高。  相似文献   

8.
In the present study, the tribological behavior of a Zr52.5Cu17.9Ni14.6Ti5Al10 bulk metallic glass (BMG) was investigated using pin-on-disk sliding measurements under an argon atmosphere, rubbing against a type 303 stainless steel counterface. The tested pins and disk were examined using X-ray diffractometry, optical microscopy, profilometry, scanning electron microscopy and transmission electron microscopy. The results showed that the wear of the BMG pins was substantially larger compared with previous tests performed against a zirconia counterface. Strain softening was found in the near-surface region of the glassy pin due to the highly localized shearing. Frictional heating contributed to the occurrence of viscous flow and material transfer on the worn surface of the wear pin and the disk, respectively. Thus, the pin exhibited a severe adhesive-dominated sliding wear.  相似文献   

9.
This study evaluates the effects of annealing temperature and of the oxides produced during annealing processes on the tribological properties and material transfer behavior between the PVD CrN and CrAlN coatings and various counterface materials, i.e., ceramic alumina, steel, and aluminum. CrAlN coating has better thermal stability than CrN coating in terms of hardness degradation and oxidation resistance. When sliding against ceramic Al2O3 counterface, both CrN and CrAlN coatings present excellent wear resistance, even after annealing at 800 °C. The Cr-O compounds on the coating surface could serve as a lubricious layer and decrease the coefficient of friction of annealed coatings. When sliding against steel balls, severe material transfer and adhesive wear occurred on the CrN and CrAlN coatings annealed at 500 and 700 °C. However, for the CrAlN coating annealed at 800 °C, much less material sticking and only small amount of adhesive wear occurred, which is possibly due to the formation of a continuous Al-O layer on the coating outer layer. The sliding tests against aluminum balls indicate that both coatings are not suitable as the tool coatings for dry machining of aluminum alloys.  相似文献   

10.
为了提高TC4合金的耐磨性能,采用激光热喷涂技术在其表面制备了Co30Cr8W1.6C3Ni1.4Si涂层。通过扫描电子显微镜(SEM)和X射线衍射(XRD)分析了涂层的形貌和物相,并通过摩擦磨损实验研究了涂层在PAO+2.5% MoDTC(质量分数)油中的磨损行为。结果表明,激光热喷涂的Co30Cr8W1.6C3Ni1.4Si涂层主要由Ti、WC1-x、CoO、Co2Ti4O和CoAl相组成,在涂层界面形成冶金结合。在激光功率为1000、1200和1400 W时所制备的涂层平均摩擦因数分别为0.151、0.120和0.171,其对应的磨损率分别为1.17×10-6、1.33×10-6和2.80×10-6 mm3?N-1?m-1,磨损机理为磨粒磨损,其枝晶尺寸对降磨起主要作用。  相似文献   

11.
B4C coating was fabricated by vacuum plasma spraying and the tribological properties of the coating against WC-Co alloy were evaluated by sliding wear tests. Al2O3 coating, one of the most commonly used wear-resistant coatings, was employed as comparison in the tribological evaluation. The results obtained show that, the B4C coating is composed of a large amount of nanostructured particles along with some amorphous phases. Both of the friction coefficient and wear rate of the B4C coating are much lower than those of the Al2O3 coating, and the tribological evaluation reveals a decreasing trend for the B4C coating in friction coefficient as well as wear rate with increasing normal load, which is explained in terms of the formation of a protective transfer layer on its worn surface. Tribofilm wear is found to be the dominant wear mechanism involved in the B4C/WC-Co alloy friction pair.  相似文献   

12.
Friction and wear behavior of a peak aged Cu–0.65 wt.%Cr alloy was investigated. The friction and wear experiments were run under ambient conditions with a pin-on-disk tribometer. Experiments were performed using various applied normal loads and sliding velocities. The tribological behavior of the studied alloy was discussed in terms of friction coefficient, wear loss and wear mechanism.Friction coefficient and wear loss have shown large sensitivity to the applied normal load and the sliding velocity. At the sliding velocity of 0.3 m/s weight loss increased from 6.9 to 51 mg by increasing the normal load from 20 to 40 N. At higher sliding velocity minimum weight loss is achieved at 60 N normal load. So it can be seen that with increasing normal load wear rate decreases due to the formation of a continuous tribofilm which consists of Fe–Cu intermetallic. Varying of friction coefficients in different conditions of normal load and sliding velocity is correlated to the wear behavior.The analysis of worn surfaces by XRD and SEM showed that an increase in normal load and sliding velocity creates an intermetallic wear-induced layer, which modifies the wear behavior of the alloy. The XRD result indicates that new phase of Cu9.9Fe0.1 is generated on worn surfaces of the pin specimens during the wear tests. There is a significant correlation between the micrograph of worn surfaces and the wear rate of specimens.  相似文献   

13.
The aim of this work was the evaluation of the improvement of mechanical properties of a low-alloyed steel using a duplex treatment (nitriding + CrN 5 μm PVD). The effect on adhesion, wear, impact resistance and stiffness was investigated. The obtained results were compared to CrN coating deposed on traditional quenching and tempering substrate, heat treatment at which a 4140 steel grade is usually processed. The microstructure was analyzed by scanning electron microscopy and the mechanical properties were evaluated by nanoindentation testing, impact resistance evaluation, scratch resistance measurements and ball-on-ring wear testing under unlubricated conditions. The results showed an improved critical load, better tribological properties (friction coefficient equal to 0.1 during the wear test) and an increased behaviour in the presence of cycling impact loading conditions (up to a normal applied load of 5 GPa) for the duplex-treated samples. Therefore for functional coated components an extension of duplex-treated low-alloyed steels is expected.  相似文献   

14.
In order to improve the corrosion and tribological properties of steel, chromium oxide coatings were prepared by a new combined process, namely, chromizing and plasma oxidizing treatments using double glow plasma technology under various oxygen flow rates. The composition and microstructure of the coatings were analyzed respectively by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicated that the oxygen flow rates had a great effect on the surface structure of the prepared Cr2O3 coatings, and dense and smooth Cr2O3 coatings were prepared at the oxygen flow rate of 10 sccm. The Cr2O3 coatings exhibited the better corrosion resistance which was in good agreement with the results obtained by the microstructure studied. Further mechanical properties test showed that the Cr2O3 coatings with high hardness and elastic modulus adhered well to the steel substrates and displayed excellent wear resistance and low coefficient of friction under dry sliding wear test conditions. The wear mechanism was mostly dominated by the “soft abrasion”.  相似文献   

15.
The tribological mechanisms of friction and lubrication have been investigated in TiN coatings patterned to contain microscopic reservoirs for solid lubricant entrapment. Photo-lithography was used to fabricate three sets of samples on silicon wafers, varying the reservoir size (4 and 9 μm) and spacing (11 and 25 μm), which resulted in samples with a nominal reservoir area of either 2 or 10%. Pin-on-disk tests were run using lubricants of graphite and indium and counterfaces of alumina and steel (440C). In most cases, the samples with the 9 μm holes spaced 25 μm apart gave the lowest friction coefficients and longest wear life. Analysis of the wear tracks by SEM/EDS methods showed carbon to be present in the holes of the graphite/steel counterface samples, but TiO2 was found in the holes of the graphite/alumina counterface samples. For the indium/steel counterface samples indium was detected within the microreservoirs, but iron was also found, transferred from the ball. These experiments highlight a variety of tribological mechanisms that can operate in microreservoir-patterned coatings.  相似文献   

16.
Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.  相似文献   

17.
运用等离子喷涂技术制备了TiC颗粒增强镍基合金复合涂层,分析了TiC颗粒增强镍基合金复合涂层的微观结构,研究了其摩擦磨损行为与机理。结果表明:TiC颗粒增强镍基合金复合涂层主要由γ-Ni,CrB,Cr7C3和TiC构成;复合涂层与基底材料间形成了厚度为9.4μm的过渡层,达到了冶金结合。当TiC颗粒含量为30%(体积分数)时,复合涂层的摩擦系数和磨损率均最低,即其摩擦系数为0.33,较纯镍基合金涂层降低了30%;其磨损率为0.3×10-3mm3/m,是纯镍基合金涂层的1/3。当载荷在6~10N的范围内时,复合涂层呈轻微磨损,其磨损机理主要为粘着磨损;当载荷达到12N时,复合涂层产生严重磨损,其磨损机制转变为硬质相的脱落和转移层的层脱剥落。  相似文献   

18.
The self-lubricating composites of Ni3Al-Ti3SiC2-TiC-C (NMC) with varying Ti3SiC2 contents were fabricated by spark plasma sintering technique. Dry sliding pin-on-disc friction and wear tests of NMC against Si3N4 ceramic ball were undertaken at 25, 200, 400, 600, and 800 °C in air, respectively. The results showed that NMC with 15 wt.% Ti3SiC2 lubricant owned the excellent tribological properties over a wide temperature range from 25 to 800 °C, whose friction coefficients and wear rates were about 0.17-0.58 and 0.31-4.2 × 10?5 mm3/N/m, respectively. A possible explanation for these results was that the subsurface microstructure self-refinement and the special stratification morphology of the tribo-layer were beneficial to the reduction of friction coefficient. Meanwhile, the protective action of the tribo-layer for the frictional surface could also decrease the wear rate.  相似文献   

19.
The tribological behaviour of Al2O3 coatings on AISI 316 stainless steel, obtained by the process of controlled atmosphere plasma spraying (CAPS), is studied in this work. Atmospheric plasma spraying (APS) and high pressure plasma spraying (HPPS) were applied in order to produce these coatings. The APS coatings exhibited lower microhardness values compared to the values of HPPS coatings. Regarding the HPPS coatings it was found that plasma composition, through its heat capacity, does influence the heat transfer to particles, and, consequently, their flattening and densification process, which govern coating properties. It was revealed that tribological behaviour of coatings was influenced by the applied spraying method too. Coatings from HPPS under high-enthalpy conditions led to worst wear behaviour. In general, properties, such as microstructure, microhardness, coefficient of friction and wear resistance depended on the processing conditions such as pressure and composition of the spraying chamber atmosphere.  相似文献   

20.
为了降低机械零件在强烈摩擦磨损条件下的摩擦因数,提高其耐磨性,制备了等离子喷涂石墨/CaF2/TiC/镍基合金复合涂层,研究其摩擦学行为及机理。结果表明,石墨/CaF2/TiC/镍基合金复合涂层的摩擦因数为0.22~0.288,较纯镍基合金涂层的降低了25.9%~53%,磨损率较之降低18.6%~70.1%。与GCr15钢球对摩时,复合涂层的磨损表面逐渐形成了由铁氧化物、石墨和CaF2组成的转移层,使GCr15钢球与复合涂层的摩擦转变为钢球与转移层的摩擦。由于转移层起到固体润滑作用,复合涂层的摩擦因数和磨损率大幅度降低。复合涂层的主要磨损机理是转移层在载荷的反复作用下而产生的层脱剥落。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号