首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
紫铜化学镀Ni-P合金工艺   总被引:1,自引:0,他引:1  
以酸性含锌活化液活化紫铜基体,获得了化学镀Ni-P合金镀层。采用正交试验法,研究了锌粉含量、活化温度、活化时间以及施镀时间对Ni-P合金镀层性能的影响,优化得到了试验范围内的最佳工艺参数:锌粉含量为9g/L,活化温度为60~70℃,活化时间为90s,施镀时间为80min。以此工艺参数获得的镀层与紫铜基体结合良好,沉积速率为10.13μm/h,显微硬度可达578.3HV0.01,无孔隙缺陷,并且镀层为非晶态结构,其含P量为11.83%。这将大大提高紫铜基体的耐磨性和耐蚀性。  相似文献   

2.
测量了不同类型Ni-P化学镀试样和基体的孔隙率,以及在HCl、NaCl和NaOH溶液中的腐蚀速率,比较了不同类型Ni-P化学镀试样在3.5%NaCl溶液中的极化曲线,对比分析了酸性和酸碱复合条件下所得Ni-P镀层的表面形貌。结果表明:化学镀Ni-P合金能显著改善NdFeB永磁体的耐腐蚀性和致密性,且以弱碱性化学镀为底层,酸性化学镀为表层的酸碱复合镀层的致密性和耐腐蚀性最佳,单一酸性镀层的耐腐蚀性又优于碱性镀层。  相似文献   

3.
光亮剂对ZL101铝合金表面化学镀镍磷合金层的影响   总被引:1,自引:0,他引:1  
研究了在ZL101铝合金表面化学镀Ni-P合金层的结构、显微硬度和耐蚀性.化学沉积Ni-P合金层的主盐是硫酸镍,次亚磷酸钠为还原剂,柠檬酸钠为络合剂.测试了电解液中光亮剂含量对镀层晶体结构、显微硬度和耐蚀性的影响.XRD衍射图谱显示,在所有镀态下Ni-P合金层均为非晶结构,而经过一定温度的热处理后逐渐向晶态转变直至完全晶化.合金镀层的显微硬度值镀态时较低,约为436 HV,随着热处理温度的升高,在400 ℃完全晶化后镀层表面的显微硬度值达到最大,约为1 096 HV.在3.5 wt.% NaCl溶液中测定的动电位极化曲线显示,在铝合金表面化学镀Ni-P合金层具有较好的耐蚀性能.  相似文献   

4.
张贤  胡建文  张楠  高群  李燕辉 《表面技术》2016,45(12):73-77
目的提高AZ91HP镁合金的耐蚀及耐磨性,扩大其应用范围。方法采用H_3PO_4+Na_3PO_4酸洗液+NH_4HF_2活化的无铬前处理工艺,再直接化学镀,获得镍磷合金镀层,随后对镀层进行了热处理。对施镀前后基体和镀层的形貌、显微硬度和耐蚀性等进行了表征分析。结果 AZ91HP镁合金经H_3PO_4+Na_3PO_4酸洗+NH_4HF_2活化的无铬处理后施镀,形成的细小胞状组织均匀致密,结合力良好,镀层结构以非晶态相为主,耐腐蚀性比基体显著增高。经热处理后,镀层的硬度明显增高且在400℃时获得的镀层硬度最高,但耐蚀性有所下降。结论 H_3PO_4+Na_3PO_4酸洗体系+NH_4HF_2活化为镁合金提供了一种环保而有效的化学镀前处理方法,获得了以非晶态相为主的Ni-P镀层,提高了基体的耐腐蚀性,镀后热处理可进一步提高镀层的硬度。  相似文献   

5.
在碱性条件下,通过控制化学镀液的温度,在38CrMoAl钢上获得了很好的Ni-P化学镀层组织。利用高倍金相显微镜观察了镀层的表面形貌和镀层的厚度,利用显微硬度计测量了镀层的硬度,采用碱液全侵蚀腐蚀法测量了试样的耐腐蚀性。结果表明,在化学镀镀液温度为40℃时,镀层的表面颗粒细小且均匀,分布致密,镀层厚度适中、边沿平整,其显微硬度为920HV;对4%NaOH溶液,镀层最大腐蚀损失量为0.005mg·cm~(-2),具有良好的耐磨性和耐腐蚀性。  相似文献   

6.
采用化学镀技术在A356合金基体上制备了Ni-P-纳米WC化学复合镀层,并选用真空热处理的方式,对制备的Ni-P-纳米WC纳米复合镀层分别在200、300、400和500℃下进行镀后处理,与镀态下镀层性能进行对比,研究不同热处理温度对Ni-P-纳米WC复合镀层形貌、成分、物相、硬度和耐腐蚀性的影响。结果表明:试验制备的Ni-P-纳米WC复合镀层成分均匀、组织致密,镀层结构呈现非晶态;镀态下,复合镀层硬度达到917.8 HV0.1,约为基体的6倍;在3.5%NaCl溶液中的极化曲线结果显示,复合镀层自腐蚀电流密度比A356合金提高了2个数量级,起到较好的耐腐蚀效果。热处理后镀层发生晶态转变,且随热处理温度的升高,镀层晶化程度提高,400℃以上时镀层完全表现为晶态;热处理态镀层中析出Ni_3P相,镀层硬度随温度的升高呈现先升高后降低的趋势,400℃热处理镀层硬度达到1353.6 HV0.1;与镀态下相比,热处理镀层在3.5%Na Cl溶液中的耐腐蚀性下降,但是仍然表现出较好的耐腐蚀效果。  相似文献   

7.
目的提高Ni-P镀层的硬度。方法在化学镀Ni-P过程中添加SiO2微粒,形成Ni-P-SiO2复合镀层,研究施镀温度、微粒添加量和镀后热处理温度对复合镀层微观结构及硬度的影响。结果复合镀层含非晶结构Ni和SiO2相。随施镀温度的升高及SiO2微粒添加量的增加,镀层表面变得均匀、致密且硬度升高,显微硬度最高达355HV;当施镀温度超过80℃,微粒添加量超过10 g/L时,镀层表面均匀性变差,硬度下降。经热处理后,镀层向晶态转变,热处理温度达到300℃时开始析出Ni3P相,镀层的显微硬度随热处理温度的升高而升高。结论当施镀温度为80℃、微粒添加量为10 g/L时,所得复合镀层的性能较为优异,热处理可进一步提高复合镀层的硬度。  相似文献   

8.
目的提高Ni-P镀层的硬度。方法在化学镀Ni-P过程中添加SiO2微粒,形成Ni-P-SiO2复合镀层,研究施镀温度、微粒添加量和镀后热处理温度对复合镀层微观结构及硬度的影响。结果复合镀层含非晶结构Ni和SiO2相。随施镀温度的升高及SiO2微粒添加量的增加,镀层表面变得均匀、致密且硬度升高,显微硬度最高达355HV;当施镀温度超过80℃,微粒添加量超过10 g/L时,镀层表面均匀性变差,硬度下降。经热处理后,镀层向晶态转变,热处理温度达到300℃时开始析出Ni3P相,镀层的显微硬度随热处理温度的升高而升高。结论当施镀温度为80℃、微粒添加量为10 g/L时,所得复合镀层的性能较为优异,热处理可进一步提高复合镀层的硬度。  相似文献   

9.
热处理对钛基化学镀Ni-P镀层性能的影响   总被引:4,自引:2,他引:2  
为了改善钛合金耐磨性,利用化学镀法在钛基表面获得Ni-P合金镀层,着重考察了热处理温度对镀层腐蚀和磨损性能的影响.采用XRD、SEM、EDS等手段分析了镀层的结构、表面形貌及组成.通过磨损量和在HC1溶液中极化曲线分析了镀层的耐蚀和磨损性能.结果表明,镀态下镀层是胞粒状堆积形式,属非晶结构,磷含量为6.9wt%;随着热处理温度变化其耐蚀性存在最佳值,250℃×1h热处理后的Ni-P镀层,在1mol/L HC1溶液中的腐蚀电流和腐蚀电位分别为0.0129mA/cm2和-0.427V,耐腐蚀性能优于其它镀层;镀层硬度随热处理温度的升高先增加后降低,磨损量则呈相反趋势,400℃硬度达到最高值960.5HV,磨损量最低值达到15.6mg,此时镀层为晶态结构,表面呈弥散状态;热处理可提高钛基化学镀层的耐磨性.  相似文献   

10.
采用直接化学复合镀法在ZL102合金表面制备了Ni-P-SiC复合镀层,经不同温度热处理后,利用XRD、DSC、扫描电镜等对复合镀层的结构和形貌进行了分析,并对镀层的结合力、显微硬度、耐蚀性及耐磨性等进行了测试。结果表明:镀态镀层由晶态相和非晶态相组成,热处理过程中非晶态相向晶态转化;镀层的显微硬度随热处理温度的升高呈先升后降的趋势,在400℃时达到最大值1395.28 HV;镀层经400℃×1 h热处理后,镀层中的镍和磷原子向铝基体中扩散,复合镀层与基体结合良好,耐磨性和耐蚀性较基体有很大程度的改善,但热处理后镀层的耐蚀性与镀态的相比有所降低。  相似文献   

11.
纳米金刚石的加入对镁合金Ni-P镀层组织和性能的影响   总被引:1,自引:1,他引:0  
毕晓勤  韦亚琳 《表面技术》2016,45(12):68-72
目的提高镁合金化学镀层的力学性能。方法选择出一组优良镁合金化学镀Ni-P工艺参数,在Ni-P镀液中加入不同的纳米金刚石浓度。通过观察所得镀层的微观组织形貌,对比镀层形貌组织;通过对复合镀层进行热处理,分析镀层组织结构的变化;通过测定金刚石加入前后镀层的摩擦系数,检测了复合镀层的耐磨损性能;通过查看镀层腐蚀斑点数目,检测复合镀层的耐腐蚀性能。结果随着纳米金刚石浓度的增加,复合镀层的形貌越好,当纳米金刚石加入量达到6 g/L时,所得复合镀层的微观形貌均匀、致密。热处理使镀层结构由非晶态变为结晶态,显微硬度明显提高。金刚石的加入致使镀层的摩擦系数降低且稳定,相比化学镀Ni-P镀层,加入金刚石后的复合镀层的腐蚀斑点数较少。结论纳米金刚石的加入大大提高了镀层的力学性能。  相似文献   

12.
A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaC1 solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10^-3 mm^3/m and 0.13-0.177, 3.056×10^-4 mm^3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.  相似文献   

13.
对Zr-8Al合金进行了化学复合镀Ni-P-ZrO_2处理,并研究了不同ZrO_2粒子加入量制备的复合镀层的显微结构、显微硬度、耐磨性和抗蚀性。结果表明,与单纯化学镀Ni-P镀层相比,Ni-P-ZrO_2复合镀层的显微硬度值显著提高,ZrO_2的添加量为4 g/L获得复合镀层显微硬度最高,耐磨性好;在3.5%(质量分数)NaCl溶液中耐蚀性虽有所下降,但腐蚀后镀层完整,仍具有较好的抗蚀性。Zr-8Al合金表面采用4 g/L ZrO_2粒子制备的Ni-P-ZrO_2复合镀层兼具很好的耐磨性和较好的耐蚀性,适用于既要耐磨又要抗蚀的空间活动构件。  相似文献   

14.
A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution. It is demonstrated that the Ni-P coatings deposited by this novel technique have a crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ ...  相似文献   

15.
用直接化学镀Ni-P和先电镀Ni后化学镀Ni-P两种方法在A356合金表面施加镀层.利用恒电位仪、盐雾实验、扫描电镜和显微硬度计等分析测试手段研究了两种工艺处理后镀层的性能.结果表明:两种不同工艺得到的镀Ni-P样品均具有优异的耐蚀性和较高的硬度,对Al合金基体均有很好的保护作用;其中带镀Ni中间层的化学镀Ni-P层更致密,具有更好的耐蚀性和硬度.  相似文献   

16.
2024铝合金表面化学镀镍工艺研究   总被引:1,自引:0,他引:1  
通过正交实验确定了2024铝合金表面化学镀镍合金层的镀液组成,并通过扫描电镜对镀层的表面形貌进行了观察,通过交流阻抗对镀层在3.5%NaCl溶液的耐蚀性进行了测试。实验结果表明,采用本溶液组成和工艺可以制备表面均匀平整、致密的Ni-P合金层,镀层与基体结合良好。同时,镀层的显微硬度约是基体的8.5倍,耐蚀性得到明显改善,具有良好的工业应用前景。  相似文献   

17.
金属表面Ni-P化学镀层研究现状   总被引:4,自引:4,他引:0       下载免费PDF全文
从力学和耐蚀性能方面,综述了Ni-P二元化学镀层、三元化学镀层和化学复合镀层的研究现状。对于不同基材上的二元镀层,表面钝化剂、络合剂和热处理影响碳钢二元镀层的力学与耐蚀性能;表面阳极化、激光表面合金化和热处理影响铝合金二元镀层的附着力、耐蚀性与硬度;表面阳极活化和热处理影响不锈钢二元镀层的结合力与硬度。对于三元镀层,热处理和激光晶化影响Ni-W-P三元镀层的耐磨性与耐蚀性;含Mo元素的Ni-Mo-P三元镀层在不同温度下热处理后,均表现出良好的耐蚀性;稀土金属氧化物可改变三元化学镀层的镀速、表面质量、晶体结构与耐蚀性能。对于复合镀层,由于添加了Si C,Si O_2,WC和PTFE等不溶性粒子,因此硬度、耐磨性、耐蚀性和自润滑性得到提高。三元化学镀层与化学复合镀层的力学和耐蚀性能明显优于二元化学镀层,是Ni-P化学镀研究和发展的方向。  相似文献   

18.
目的利用锡酸盐转化膜中间层避免化学镀镍镀层与金属基体的直接接触,降低其产生原电池腐蚀的趋势,提高镁合金化学镀镍层的耐蚀性及稳定性。方法采用锡酸盐化学转化膜技术在AZ31镁合金表面制备锡酸盐转化膜层,然后通过直接化学镀镍技术在该膜层上沉积Ni-P镀层。利用SEM、EDS、浸泡析氢、电化学测试等手段,研究了复合镀层的显微结构、相组成、耐蚀性。结果锡酸盐转化膜由细小均匀的球形颗粒堆积而成,颗粒之间存在空隙,为直接化学镀镍时镍磷的初始沉积提供了可能。化学转化膜表面沉积的化学镀镍层均匀致密,形成典型的胞状结构。基体-化学转化膜-化学镀Ni-P合金层三者之间的结合良好,保证了复合镀层优良的耐蚀性能。结论化学镀Ni-P层能够在不经过钯活化处理的条件下直接在锡酸盐转化膜上沉积,锡酸盐转化膜中间层避免了Ni-P阴极性镀层与阳极性镁基体的直接接触,降低了Ni-P镀层局部缺陷对整体防护效果的影响,提高了镀层的耐蚀性及耐久性。  相似文献   

19.
AZ31镁合金轧态薄板化学镀Ni-P合金的工艺研究   总被引:1,自引:0,他引:1  
为了改善AZ31镁合金轧态薄板的耐腐蚀性能,通过正交试验优化了化学镀Ni-P的配方及工艺,并对Ni-P镀层的形貌、镀层厚度、镀层中P元素的含量以及镀层在3.5%NaCI溶液中的极化曲线进行了测试和表征。结果表明,AZ31镁合金化学镀Ni—P的最优方案为:碱式碳酸镍10g/L,次亚磷酸钠25g/L,温度80%,pH值=8。所得的Ni—P镀层均匀,无明显缺陷,厚度约为18~23μm,P元素的质量分数为9.68%。试样经化学镀Ni—P后的自腐蚀电位大幅度提高,出现了约600mV的钝化区间,其耐蚀性能明显提高。  相似文献   

20.
化学沉积 Ni-Mo-P 和 Ni-P 镀层退火晶化组织及耐蚀性   总被引:1,自引:1,他引:0  
目的研究化学沉积Ni-4.11%Mo-6.50%P和Ni-9.19%P合金镀层退火晶化转变特征,通过定量表征镀层的晶化程度、晶粒尺寸及结晶相的质量分数,建立显微组织与耐蚀性的关联。方法采用XRD衍射技术和Jade软件分析,定量表征镀层的晶化组织特征,由SEM/EDS测试确定镀层的成分及表面形貌,通过浸泡腐蚀实验及金相显微观察,对比两种镀层的耐蚀性。结果 Ni-Mo-P镀层在低于400℃退火时,只有Ni相结晶;在≥400℃退火时,发生Ni3P晶化反应,同时伴有Ni-Mo固溶体的形成,600℃时的晶化程度为88.13%。相比之下,Ni-P镀层中Ni3P相开始析出的温度降至300℃,600℃时的晶化程度达到91%。在相同温度进行热处理时,Ni-Mo-P镀层晶粒尺寸小于Ni-P镀层。在发生Ni3P晶化反应的温度下,两种镀层中Ni3P的晶粒尺寸总是大于Ni相。在0.5 mol/L的H2SO4中,对于Ni-Mo-P镀层,除300℃外,其他温度下的热处理均能显著改善其耐蚀性;而对于Ni-P镀层,镀态下具有最好的耐蚀性能。在10%的HCl溶液中,退火温度为600℃时,Ni-Mo-P镀层的耐点蚀性能更好;而Ni-P合金则相反,镀态及低温200℃退火后的耐点蚀性能最好。结论 Mo的共沉积提高了Ni-Mo-P镀层Ni3P的析出温度,降低了镀层的晶化程度及晶粒尺寸;与Ni-P镀层相比,高温退火的Ni-Mo-P镀层表现出了优异的耐点蚀性能,但耐硫酸均匀腐蚀的性能较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号