首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
阻尼冷却管法制备A356铝合金半固态浆料的研究   总被引:2,自引:0,他引:2  
介绍了阻尼冷却管法制备半固态浆料工艺的实验装置及其原理,采用A356铝合金进行了不同浇注温度的系列实验。铸件微观结构中晶粒尺寸和形状因子测算分析结果表明:由于阻尼冷凝管的冷却和搅拌作用,熔体浇注温度越低,在两相温度区间内生成的游离晶核就越多,浇铸的铸件晶粒尺寸和形状因子数值就越小,晶粒球化程度越高。阻尼冷凝管法制备的合金浆料或铸坯能够应用于下一步半固态成形加工。  相似文献   

2.
采用自主研发的强制对流流变装置,研究搅拌速度对7075铝合金半固态组织的影响规律。实验结果表明,随着搅拌速度的增加,半固态组织的晶粒尺寸减小,形状因子及粒子数增加。同时,对强制对流流变成形浆料制备过程进行数值模拟,研究熔体在筒体内的流动规律和搅拌速度对合金熔体温度场和固相率的影响。模拟结果表明,合金熔体在FCR筒体内存在复杂的对流运动,熔体对流极大地改变了合金熔体温度场和固相率的分布。增加对流强度有利于减小合金熔体的过冷度梯度和改善初生晶粒的分布。  相似文献   

3.
开发一种半固态金属浆料制备技术,即引晶法,研究工艺参数对半固态A356铝合金浆料组织的影响,讨论球状初生α(Al)晶粒的形成机制和形貌控制。结果表明:当制备浆料为4kg、引晶尺寸为10mm、加入量为3.5%、倾倒温度为611-617°C时,半固态浆料中初生α(Al)晶粒的平均直径可达40-75μm,形状因子可达0.82-0.89。当引晶尺寸为10mm、倾倒温度为613°C、加入量为2%-4%时,初生α(Al)晶粒的平均直径可达45-82μm,形状因子可达0.78-0.88。倾倒温度的降低或者引晶加入量的适当增加,可以改善初生α(Al)晶粒的组织。当QR=QA、Rh=Rc时,只要倾倒温度适宜就可以制备优质半固态浆料。引晶熔化时产生的枝晶碎块是半固态浆料中初生α(Al)晶粒的直接来源,形成的温度过冷区也有利于异质形核。  相似文献   

4.
Zhu  Wen-zhi  Mao  Wei-min  Wei  Qing-song  Hui  Chen  Shi  Yu-sheng 《中国铸造》2019,16(1):31-39
The semisolid slurry of Al-Zn-Mg-Cu alloy was prepared through a self-designed water-cooled copper serpentine pouring channel(WSPC) machine. Influences of pouring temperature, the number of turns and the cooling water flow rate on the microstructure of the semisolid Al-Zn-Mg-Cu alloy slurry were investigated. The results show that the semisolid Al-Zn-Mg-Cu alloy slurry with satisfactory quality can be generated by the WSPC when the pouring temperature is in the range between 680 ℃ and 700 ℃. At a given pouring temperature, the average grain size of primary α-Al decreases and the shape factor increases with the increase of the number of turns. When the cooling water flow rate is 450 L·h~(-1), the obtained semisolid slurry is optimal. During the preparation of the semisolid Al-Zn-Mg-Cu alloy slurry with low superheat pouring, the alloy melt has mixed inhibition and convection flow characteristics by "self-stirring". When the alloy melt flows through the serpentine channel, the chilling effect of the inner wall of the channel, the convection and mixed inhibition of the alloy melt greatly promote the heterogeneous nucleation and grain segregation. This effect destroys the dendrite growth mode under traditional solidification conditions, and the primary nuclei gradually evolve into spherical or nearspherical grains.  相似文献   

5.
A new technique for preparing semisolid slurry, namely, distributary-confluence runner (DCR), was combined with die-casting (DC) to conduct rheological die-casting (R-DC) of A356 alloy. The mechanism of DCR for semisolid slurry preparation was determined via numerical simulations and experiments. The microstructure and mechanical properties of A356 alloys prepared via DC and R-DC were studied. High-quality slurry containing numerous primary α-Al (α1-Al) with an average size of 49 μm and a shape factor of 0.81 could be prepared via DCR. Simulation results indicated that the unique flow state and physical field changes during slurry preparation were conducive to accelerating the uniformity of melt temperature and composition fields, nucleation exfoliation, and spherical growth. Compared with the alloy prepared via DC, the tensile strength, yield strength, and elongation of A356 alloy prepared via R-DC increased by 19%, 15%, and 107%, respectively.  相似文献   

6.
自孕育法制备AZ31镁合金半固态流变成形组织(英文)   总被引:1,自引:0,他引:1  
采用新型自孕育流变铸造技术对变形镁合金半固态组织进行控制。该工艺过程为将合金熔体与一定量的合金固体颗粒(自孕育剂)混合,然后将混合金属通过一个多流股导流器浇入铸型或收集器。结果表明:采用自孕育工艺,合金熔体处理温度690~710℃,孕育剂的加入量为3%~7%时能有效将AZ31镁合金传统铸造中的粗大枝晶组织转变为细小、近球状的非枝晶组织;当合金熔体处理温度较高时,增加孕育剂的加入量或减小导流器的倾斜角度有利于获得非枝晶组织。自孕育工艺制备的AZ31镁合金半固态浆料在620℃等温保温30s后能有效改善初生α-Mg颗粒的圆整度;延长保温时间有助于减小颗粒的圆整度,但同时颗粒发生粗化。利用Lifshitz-Slyozov-Wagner(LSW)理论对初生相颗粒在等温保温过程中的组织圆整、粗化过程进行了分析。  相似文献   

7.
The billets of AM60 alloy, prepared with self-inoculation method, were partially remelted into semisolid state. Effects of process parameters on remelting microstructure of semisolid billet were investigated. Experimental results show that the solid particles obtained with self-inoculation method are in smaller grain size and globular shape after partial remelting, compared with those prepared with other casting methods. In the optimized process conditions, the average size of solid particles of partially remelted billet is 65 μm, and the shape factor is 1.12. The process parameters, i.e. pouring temperature, addition amount of self-inoculants, and the slope angle of multi-stream mixing cooling channel have influence on the microstructure of partially remelted billet. The optimized temperature is from 680 °C to 700 °C, addition amount of self-inoculants is between 5% and 7% (mass fraction), slope angle of multi-stream mixing cooling channel is between 30° and 45°, with which the dendritic microstructure of as-cast billet can be avoided, and the size of solid particles of remelted billet is reduced.  相似文献   

8.
Abstract

A rheocasting process, i.e. self-inoculation method (SIM), has been developed for preparing sound semisolid slurry of AM60 alloy. This process involves mixing between alloy melt and particles of solid alloy (self-inoculants in SIM) and subsequent pouring of the mixed melt with a multistream fluid director. Results show that the combined action of self-inoculants and fluid director can create high nucleation and survive rate of the primary α-Mg phase even with high superheat (85°C) in the AM60 alloy. The melt treatment temperature and addition amounts of self-inoculants are the main factors influencing the slurry microstructure. In order to prepare high quality semisolid slurries, proper melt treatment temperature range of 680–700°C and self-inoculants addition range of 5–7% are suggested. The grain multiplication derives from the heterogeneous nucleation induced by self-inoculants and free crystals and dendrite fragments enhanced by the fluid director; globular grain growth and coarsening of particles should be contributed to the microstructure formation.  相似文献   

9.
Abstract

One new casting topic is semisolid casting technology. It requires solid–liquid coexistence in slurry containing fine and globular crystals surrounded by liquid metal. The authors have made such the slurry using an inclined cooling plate and continuously cast AZ91 and AZ31 magnesium alloys. The factors that influence the best slurry with fine and globular crystals are the casting temperature and the length and inclination angle of the cooling plate. This investigation describes the best casting and cooling plate conditions to make semisolid slurry of AS41B magnesium alloy. The best conditions are then applied to produce continuous casting billets of AS41B magnesium alloy using an inclined cooling plate and a horizontal continuous casting machine. A 60 mm diameter AS41B billet was successfully obtained, and globular crystals (average size 57 μm) appear in the microstructures.  相似文献   

10.
In this paper, the effects of pouring temperature of magnesium melt, preheating temperature of the barrel of the screw mixer, and shear rate on the solidified microstructures of semi-solid slurry were investigated by a mechanical stirring semi-solid process. The appropriate processing parameters of slurry preparation were obtained, and the mold filling ability of semi-solid slurry for thin-walled casting was examined. Results indicate that the solid volume fraction of non-dendritic microstructure increases with a decrease in pouring temperature of magnesium melt and the barrel preheating temperature of the screw mixer. Also the grain size of primary α-phase is reduced. Furthermore, the solid volume fraction of semi-solid nondendritic structure decreases with an increase of shear rate. The fine and round granular microstructure with 30~50 μm in size of semi-solid AZ91D magnesium alloy was presented. Finally, a 1.0 mm thin-walled casting with a clear contour and good soundness was successfully made by semi-solid rheo-diecasting.  相似文献   

11.
A new technique to achieve sound semi-solid slurry by introducing angular oscillation during the earlier stage of solidification is reported. The effects of melt superheat and oscillation intensity on the grain refinement and morphology of primary Al particles in aluminum alloy A356 were investigated. Results confirmed that a fully grain refined and non-dendritic microstructure could be obtained using proper processing conditions, and the superheat of melt could be increased to a higher level. The primary Al particle had average diameter of 58 μm and average shape factor of 0.84, and featured zero entrapped eutectic.  相似文献   

12.
介绍了阻尼冷却管法制备A356铝合金半固态浆料工艺的实验装置及其原理,并进行不同浇注温度的系列实验。结果表明:由于阻尼冷凝管的冷却和搅拌作用,熔体浇注温度越低,在两相温度区间内生成的游离晶核就越多,制备得到半固态铸件的晶粒尺寸就越小,且球化程度越高。在此实验原理及结果分析的基础上,设计真空吸铸-阻尼冷却装置,近液相线温度的AZ91D镁合金液在冷却、剪切的作用下,由液态转变为半固态浆料,然后进入模具完成充型,实现镁合金半固态浆料的制备与铸件流变成形一体化;半固态镁合金熔体具有触变性及更高的黏度,以平稳、层流的充型方式完成充型,能够有效地改善成形件的质量。  相似文献   

13.
初始组织特征对充型过程中初生相演变的影响   总被引:1,自引:0,他引:1  
采用电磁搅拌法制备具有不同微观初始组织特征的半固态合金熔体,利用半固态挤压铸造法铸造螺旋线试样,使用定量金相技术分析试样的初始组织、成形的螺旋线试样不同长度上的初生相微观组织特征参数(固相率、晶粒尺寸和形状因子),研究半固态合金熔体充型过程中初生相组织的演变规律.结果表明:初生固相率在充型的沿程流动过程中变化较小;初生相的晶粒尺寸、形状因子沿充型长度呈现波浪形变化,波峰和波谷出现的位置与充型长度没有明确的关系;充型后初生相晶粒尺寸的变化幅度与充型前半固态合金熔体初生相晶粒尺寸的大小有对应关系.  相似文献   

14.
Influences of the three melt treatment processes (namely, refinement with carbon inoculation, electromagnetic stirring and "refinement & electromagnetic stirring" processing) on the microstructures of AZ91D alloy were explored experimentally. The results indicate that the micron carbon powders inoculation processing with 0.1% (mass fraction) addition level makes the grain size of the primary phase (a-Mg) decrease to approximate 40% that of the initial primary crystal, from about 530 μm to 200 μm around. The electromagnetic stirring processing not only decreases the grain sizes sharply, but also transfers the grain shape of a-Mg from coarse dendritic to nearly spheralitic with the shape factor from about 0.1 to approximate 0,8. And the "refinement & electromagnetic stirring" processing improves grain shape of a-Mg further and refines grain size to about 72 μm, less than 15% that of the initial primary crystal.  相似文献   

15.
Abstract

The RheoMetal process, based on the rapid slurry forming (RSF) technology, is a new rheocasting process enabling the production of semisolid slurry of high quality and with high efficiency. The RSF technology is based on an enthalpy exchange between two alloy systems rather than applying external cooling as is done in many other rheocasting processes. In this work, several process parameters important for the RSF technology have been investigated on aluminium A356 alloy slurry microstructures. During slurry preparation, the thermal history for the different parameters studied was also recorded. It was found that the process parameters tested (amount of solid addition, melt superheat, rotation speed) have an effect on the thermal history during processing and on the microstructures formed after slurry formation.  相似文献   

16.
介绍了阻尼冷却管法制备A356铝合金半固态浆料工艺的试验装置及其工艺流程,在不同浇注温度下进行了系列试验,并与冷却斜槽法进行了对比分析。结果表明,浇注温度越低,浇注的铸件晶粒尺寸和形状因子数值就越小,晶粒球化程度越高。与冷却斜槽法相比,同一工艺参数下阻尼冷却管法制备的铸件晶粒更为细小和圆整。  相似文献   

17.
结合半固态合金成分设计原则,通过热力学计算,研究了3种成分的半固态镁合金。通过组织观察和流变学参数分析表明,半固态组织的形成速度随铝含量增加而加快,固相粒子变得细小、圆整。分析得出铝元素主要通过两个方面影响半固态组织,一个是液相形核,另一个是再结晶晶粒尺寸。随着铝含量增加,液相形核数量增多,再结晶晶粒尺寸减小,这些都促进了半固态组织的形成和演变,有利于镁合金半固态加工。  相似文献   

18.
Semisolid slurries of Al-15Cu alloy were produced for rheoforming by a low temperature pouring technique. To investigate the morphological change of the slurry in terms of the particle mean diameter and the roundness factor, samples were extracted during the continuous cooling and the isothermal holding stage of the slurry by a simple technique of interrupt quenching. Results demonstrated that the fine-grained equiaxed dendritic structure, which formed during low temperature pouring, is changed to a globular structure when held at a semisolid temperature for sufficiently long holding time. With regard to the globulization mechanism of the primary α-phase, local melting is considered to take place at the neck of equiaxed dendrites, leading to the separation of small new particles during continuous cooling. These newly formed particles eventually grow during isothermal holding in the semisolid temperature by obeying theD 3=Kt kinetic law, which suggests coarsening by Ostwald ripening.  相似文献   

19.
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy. The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm. By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification. The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited. In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.  相似文献   

20.
利用波浪形倾斜板振动技术制备AZ31镁合金半固态坯料,获得较为理想的球形或近球形晶粒组织。结果表明:随二次加热温度的升高和保温时间的延长,半固态组织中的液相体积分数增大,固相逐渐长大并球化;AZ31镁合金580℃和610℃时二次加热组织均不适合半固态触变成形;适合触变成形的二次加热最优工艺为590℃保温40~60 min、或者600℃保温30 min;此条件下获得的平均晶粒直径为58~61μm,固相率为87%(体积分数)左右。晶格扩散机制对二次加热原子扩散起主导作用,是造成合金固相颗粒尺寸变化的根本原因;固液界面张力是造成颗粒形状球形或近球形变化的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号