首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了更细致地揭示面心立方金属单晶体的循环变形机制,利用扫描电镜电子通道衬度(SEM-ECC)技术观察研究了Schmid因子为0.5的[41841]单滑移取向铜单晶体的循环饱和位错结构.实验表明,在单滑移铜单晶体中,胞结构除了在高应变幅下的循环变形中出现外,还可能出现在循环应力-应变(CSS)曲线平台区的较低塑性应变幅下.驻留滑移带(PSBs)会随应变幅的增大而在试样表面聚集成内部含有位错胞的粗滑移带,带内的位错胞结构被认为是由于带内滑移阻力增大引起的应变集中所致形成的.此外,CSS曲线高应变幅区起始部分对应的循环饱和位错结构观察揭示出迷宫结构和胞结构是由PSBs逐渐演变而成的.  相似文献   

2.
研究了定向凝固NiAl-Mo(Hf)和NiAl-Fe(Nb)合金的拉伸行为和显微组织变化.结果表明,两种合金在一定的拉伸条件下均具有反常的屈服行为和中温脆性.反常屈服和中温脆性行为与合金中含有的Ni3Al相有关.两种合金在高温时还表现出高应变速率的超塑性变形行为.超塑性变形的主要机理是位错滑移和攀移产生的应变硬化与动态回复和动态再结晶的应变软化作用相平衡.超塑性变形试样的断口呈韧性特征,在断裂区有孔洞产生.  相似文献   

3.
Ti-2Al-2.5Zr合金的高温低周疲劳行为   总被引:1,自引:0,他引:1  
研究了Ti-2Al-2.5Zr合金的高温(673K)低周疲行为,结果表明:Ti-2Al-2.5Zr合金的循环变形表现出初始硬化、随后软化和最后二次硬化的特征。在高温和较高应变幅((Δε_t/2)1.0%)条件下,材料的疲劳寿命高于室温下的疲劳寿命。随着应变幅的提高,高温673 K材料疲劳变形后形成的位错组态由位错墙逐渐演变成成熟的位错胞。多系滑移开动和塑性变形均匀性增强是高温Ti-2Al-2.5Zr合金疲劳寿命提高的原因。  相似文献   

4.
研究了FGH96镍基高温合金在550,720℃条件下应变控制的高温低周疲劳断裂机理.结合断口宏微观观察和位错组织结构观察,探讨了FGH96合金疲劳行为的微观机理,并建立了扩展区面积和疲劳寿命的定量关系,结果表明:FGH96合金的断裂特征以穿晶解理为主;合金在较高温度下具有较低的疲劳寿命是与氧化损伤和合金的塑性变形密切相关;应变幅较小时(<0.6%左右),温度对合金的疲劳寿命起主导作用,氧化损伤效应明显;位错密度在较高的应变幅下比在较低的应变幅下高得多,较高应变幅下,位错发生了交滑移甚至是攀移运动;合金的疲劳断口扩展区面积与疲劳寿命存在线性对数关系.  相似文献   

5.
对处于交变应力下A356铝合金的单轴疲劳寿命以及变形行为进行了研究,并与单一应力加载下的加载情况进行了对比.发现先进行高应力加载后换用低应力加载将会显著延长合金的疲劳寿命.合金的循环应变值主要与合金的循环加载应力幅值有关.此外,利用透射电镜的方法观察了在不同循环加载历史条件下合金中微观结构的变化情况,尤其是位错以及位错带的演变规律.并发现了沉淀物附近的位错塞积现象.  相似文献   

6.
目的 研究不同热处理状态下多种铝合金在准静态拉伸和电磁单向拉伸条件下的成形性能,并探究其中机理.方法 选择不同牌号(1060,3003,5052)和不同热处理状态(加工硬化态和完全退火态)的铝合金材料,获得材料在准静态和电磁成形条件下材料的成形性能,并通过扫描电镜(SEM)和透射电镜(TEM)对1060铝合金试样进行显微断口和微观组织分析.采用数值仿真方法,获取板料和线圈的最佳相对位置.结果 与退火态材料相比,在电磁成形条件下加工硬化态材料的成形性能提高得更多,特别是在1060铝合金中,退火态试样准静态拉伸的伸长率和动态拉伸的伸长率几乎一致,而H24态试样的动态拉伸伸长率(20.2%)为准静态拉伸(5.1%)的3.96倍.扫描断口发现电磁成形断裂面更窄,韧窝大小更均匀.1060-O试样电磁成形后,晶粒内部位错密度低,微观结构主要为亚晶.1060-H24试样电磁成形后的组织中位错密度较高,出现位错胞.结论 加工硬化态材料中存在的初始缺陷有利于电磁成形过程中位错的产生和交滑移的发生,从而提高合金成形性.  相似文献   

7.
采用一种新型中间合金复合细化剂,在常规生产工艺条件下对高温合金K4169铸件进行了晶粒细化.测试了常规工艺和细晶铸造工艺两种试样的常温和中温(700℃)条件下的低周疲劳性能.结果表明,这一新型工艺方法能有效细化高温合金K4169晶粒.细晶试样的室温低周疲劳性能有较大的提高,且数据的分散性有所改善;在中温时,疲劳寿命的优劣和疲劳应变幅有关:在小应变幅条件下,细晶仍然有较高的疲劳寿命,在大应变幅条件下,细晶疲劳寿命比粗晶有所降低,但数据的稳定性较好.  相似文献   

8.
研制了一种新型铝合金层压复合板 ,它具有高阻尼、耐腐蚀和可焊接特性。这种材料是由两层纯Al、两层ZnAl合金和一层AlMg合金经热轧制成的复合材料。该材料在 5 0℃附近有一内耗峰 ,当材料在常温下停放 1年后 ,该峰消失 ,材料的常温阻尼能力随之降低。计算了该峰的激活能 ,并通过SEM、TEM、X ray和DSC等手段 ,对该峰的起因和阻尼机制进行了分析。认为 ,该峰是由层压板中ZnAl合金层引起的 ,是在热激活条件下由位错拖曳点缺陷运动所致。层压板在常温长时停放过程中 ,由于晶体回复 ,位错密度降低 ,导致该峰逐渐减弱直至消失。此峰符合位错诱生阻尼机制。  相似文献   

9.
采用分子动力学方法对α-Fe基中不同尺寸(直径0.5-2.5 nm)共格Cu析出物和刃型位错1/2(111){110}的相互作用进行了研究,并深入探讨了不同温度(100-600 K)和不同作用位置对析出物和位错相互作用的影响规律.结果表明,随着析出物尺寸的增加,位错受到的阻碍作用随之增大.该现象源于析出物尺寸增加导致位错通过时切割面积增大.同时温度的升高,降低了析出物对位错的阻碍作用,经对比发现1.0 nm、1.5 nm和2.0 nm Cu析出物的临界剪切应力从100 K升温至600 K时平均降低了0.049 Gb/L,而在100 K、200 K、300 K、450 K和600 K环境下Cu析出物尺寸从1.0 nm增至2.0 nm时,临界剪切应力平均升高0.096 Gb/L,说明析出物尺寸对位错运动阻碍作用的影响大于温度.位错在不同位置通过析出物时,发现从析出物中心通过时受到的阻碍作用最大,且当位错滑移面离析出物中心相等垂直距离时,位错从析出物上半部分通过时受到的阻碍作用均大于下半部分.这可能是由于位错滑移面下方的拉应力场和Cu析出物的压应力场相互作用贡献较大,导致位错运动受到了较大的阻碍作用.  相似文献   

10.
通过自编软件建立了Cu合金液体、位错、晶界等原子集团模型,采用递归法计算了Cu合金电子结构。研究表明:Y在晶粒、表面、液体的环境敏感镶嵌能依次降低,Y从晶粒内向晶粒表面、液体Cu中扩散。扩散过程中Y原子填补在Cu晶粒表面缺陷处,阻碍Cu原子结晶,同时进入液体中的Y在晶粒周围形成含有高浓度Y的薄层,使晶粒生长受阻,晶粒细化。Sn向位错扩散,抑制Cr的沉淀析出,并能钉扎位错的攀移运动,推迟回复和再结晶。S在晶界偏析,使晶界结合强度降低。偏聚在晶界的S可将合金中的Zr吸附到晶界,使晶界得到强化。Cu晶粒、晶界与位错处的费米能级不同,电子在这些区域之间发生偏移,使合金内产生微电场。微电场对电子产生散射作用,使合金电阻增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号