首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
国外某难选氧化铜矿平均含铜6.91%,采用机械搅拌硫酸浸出,浸出溶液含铜高达30 g/L。针对该高浓度硫酸铜溶液,研究用萃取剂M5640萃取分离铜的工艺过程。结果表明,以M5640为萃取剂、铜电积废液为反萃剂,在合适的相比条件下,经5级萃取2级反萃,可以获得符合铜电积工艺要求的纯净硫酸铜溶液。  相似文献   

2.
国外某难选氧化铜矿平均含铜6.91%,采用机械搅拌硫酸浸出,浸出溶液含铜高达~30.0g/L。针对该高浓度硫酸铜溶液,进行了M5640 煤油萃取提铜的工艺试验研究,结果表明,以M5640为萃取剂、铜电积废液为反萃剂,在合适的相比条件下,经5级萃取、2级反萃,获得符合铜电积工艺要求的纯净硫酸铜溶液。  相似文献   

3.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

4.
Mac10 铜萃取剂的性能研究   总被引:4,自引:0,他引:4  
采用国产化工原料合成了Mac10 铜萃取剂, 进行了萃取剂用量、有机相与无机相相比(O/A)、萃取平衡pH 值、萃取动力学、萃取热力学、反萃动力学试验、反萃剂酸度试验。结果表明, Mac10 铜萃取剂具有良好萃取性能, 当萃取剂用量为15%, 相比(O/A)为75%, 萃取平衡pH =3, 萃取时间为3 min, 萃取温度为298 K, 反萃取时间为2 min, 反萃取剂酸度为硫酸浓度180 g/L 时, 萃取率不小于93%, 反萃取率不小于96%, 且水相中Cu2+浓度愈高, Mac10 对铜的萃取性能愈好。  相似文献   

5.
针对现有氯化物体系废蚀刻液中铜难以电解回收利用的现状,采用LIX984作为萃取剂,探索其对废蚀刻液中铜的萃取及反萃转型性能.系统考察了萃取剂浓度、料液酸度、萃取时间等对铜萃取的影响,硫酸浓度、反萃时间等对铜反萃的影响,绘制了萃取及反萃等温线并模拟了多级逆流过程。结果表明,采用LIX984萃取铜时,为确保铜萃取回收率,应将废蚀刻液稀释至铜浓度接近0.5mol/L或以下。铜131.24g/L、氯231.6g/L,pH=2.45的废蚀刻液稀释4倍后,可直接采用20%(体积分数)的LIX984按相比O/A=4/1、萃取时间10min、萃取温度25℃条件进行萃取,经过5级逆流萃取,铜萃取率为97.1%,氯萃取率仅0.05%。负载铜有机相采用200g/L的硫酸溶液,按照相比O/A=6/1、反萃时间5min、反萃温度25℃条件进行萃取,经过7级逆流反萃,铜反萃率为98.62%。得到的含铜47.16g/L、氯0.18g/L硫酸铜反萃液可直接用于电解回收,得到满足GB/T 467—1997中产品Cu-CATH2要求的金属铜。  相似文献   

6.
废印刷线路板微生物浸出液中铜的选择性萃取   总被引:3,自引:0,他引:3  
张承龙  王景伟  白建峰  关杰 《金属矿山》2009,39(10):158-160
对萃取法分离废印刷线路板微生物浸出液中的铜进行了研究。结果表明:选用N902为萃取剂,可很好地选择性萃取浸出液中的铜,在萃取剂浓度为10%,萃取相比为1∶1,萃取搅拌时间为5 min的条件下,铜的萃取率可达99.51%,Cu与Fe的分离系数为2 058;以硫酸溶液为反萃剂对萃取获得的负载有机相进行反萃取,在硫酸溶液浓度为1.8 mol/L,反萃取相比为1∶1,反萃取搅拌时间为5 min的条件下,铜的反萃率可达93.57%。  相似文献   

7.
针对现有氯化物体系废蚀刻液中铜难以电解回收利用的现状,本文采用LIX984作为萃取剂,探索其对废蚀刻液中的铜萃取及反萃转型研究,系统考察了萃取剂浓度、料液酸度、萃取时间等对铜萃取的影响,硫酸浓度、反萃时间等对铜反萃的影响,绘制萃取及反萃等温线并模拟多级逆流过程。研究表明:采用LIX984萃取铜时,为确保铜萃取回收率,应将废蚀刻液稀释至Cu浓度接近0.5 mol/L或以下。文中含Cu 131.24 g/L、Cl 231.6 g/L,pH=2.45的废蚀刻液稀释4倍后,可直接采用20 %(体积分数)的LIX984 按相比O/A=4:1,萃取时间10 min,萃取温度25 ℃,经过5级逆流萃取,Cu萃取率为97.1 %,Cl萃取率仅0.05 %。负载铜有机相采用200 g/L的硫酸溶液,按照相比O/A=6:1,反萃时间5 min,反萃温度25 ℃,经过7级逆流反萃,铜反萃率为98.62 %,并得到含Cu 47.16 g/L、Cl 0.18 g/L的硫酸铜反萃液,可直接用于电解回收,得到的金属铜达到国家标准GB/T467-1997 Cu-CATH2要求。  相似文献   

8.
研究用胺类萃取剂N235从某铜冶炼厂烟灰处理过程高砷高酸硫酸铜溶液萃取镉。结果表明,在溶液含0.2 mol/L氯离子条件下,以20%N235+5%仲辛醇+75%磺化煤油为萃取剂,4 mol/L的氨水为反萃剂,在适宜相比条件下,三级逆流萃取镉萃取率可达99.4%,七级逆流反萃镉反萃率可达96%,获得含镉为6.77 g/L的反萃液,实现镉与铜砷等元素的高效分离以及镉的富集。  相似文献   

9.
安徽某铜渣有价金属铜以氧化铜形式存在为主,另含11.45%磁性氧化铁,确定首先磁选回收铁,然后对磁选尾矿浸出、萃取、结晶回收铜。结果表明,在一段磨矿细度为-0.074 mm 80%,磁场强度为234 kA/m,再磨细度为-0.037 mm 90%,磁场强度为93.6 KA/m条件下可获得铁品位61.45%,回收率32.96%的铁精矿,产品达到C60质量标准要求,且大幅降低了铁对后续工艺的干扰;100g磁选尾矿在硫酸用量120 g、双氧水用量20 mL、固液比1:7、温度80℃、搅拌2 h条件下,铜的浸出率达80%,随后浸出液在O/A=1:1,萃取剂含量30%,水相pH值为3,经过3级萃取、反萃和结晶,可获得铜品位24.65%,回收率88.79%的五水硫酸铜,产品纯度高。  相似文献   

10.
湖南某黑钨渣硫酸浸出液(硫酸的浓度为1.8 mol/L)的钪、锆元素含量分别为48.18、138.00 mg/L,为消除锆对萃取钪的影响,在萃取钪前以N235和TBP为复合萃取剂进行了除锆预萃取试验。结果表明:1在复合萃取剂N235、TBP与磺化煤油的体积比为15∶15∶70,有机相与水相相比为1.5∶1,萃取时间为5 min,萃取温度为25℃,萃取振荡频率为120 r/min情况下进行单级萃取,对应的锆、钪萃取率分别为92.03%和0.96%;在硫酸溶液浓度为5mol/L、反萃相比为3∶1、反萃时间为30 min、反萃温度为25℃、振荡频率为180 r/min情况下进行3级反萃,对应的锆、钪反萃率分别为99.23%和98.22%。因此,该工艺可高效地分离锆、钪。2再生有机相对萃原液中锆的萃取率可达91.97%,与新配制萃取剂效果接近,说明再生萃取剂可以循环利用。  相似文献   

11.
高镁低品位铜镍矿氧压硫酸浸出液综合回收研究   总被引:1,自引:1,他引:0  
针对高镁低品位铜镍矿氧压硫酸浸出液特点,提出“Lix984萃取提铜-MgO中和黄钠铁矾法沉淀除铁-MgO中和沉镍”综合回收工艺。结果表明,采用Lix984可选择性萃取99.79%的铜,其他金属离子基本不萃取,经模拟工业贫铜电解液反萃,铜反萃率达98.13%,得到富铜电解液,可电积制备金属铜; 萃铜余液通过MgO中和黄钠铁矾法沉淀除铁,铁沉淀率达99.20%,镍损失率仅0.60%; 沉铁后液通过MgO中和沉淀回收镍,镍沉淀率为99.91%,并得到镍含量24.13%的氢氧化镍粗产品; 沉镍后的高浓度硫酸镁沉淀后液,可用于回收镁。  相似文献   

12.
吴展  李伟  陈志华  宁瑞 《矿冶工程》2013,33(2):105-107
采用高效萃取剂AD100从粗硫酸镍溶液中萃取回收金属铜, 考察了初始pH值、相比(A∶O)、萃取剂体积浓度、反应时间等因素对铜回收率的影响。实验结果显示, 在最优的条件下, 即: 初始pH值为2.0, 相比A∶O=3∶1, 萃取剂体积浓度为25%, 萃取时间5 min, 常温下一级萃取即可回收其中94%以上的铜, 铁、镍的萃取率分别低于0.05%和0.01%。对负载有机相进行反萃, 结果显示, 采用2 mol/L的硫酸在相比为1∶1的条件下一级反萃可回收95%的铜。  相似文献   

13.
《Minerals Engineering》2007,20(7):694-700
The leaching of low-grade oxide zinc ore and simultaneous integrated selective extraction of zinc were investigated using a small-scale leaching column and laboratory scale box mixer-settlers. Di-2-ethylhexyl phosphoric acid (D2EHPA) dissolved in kerosene was used as an extractant. The results showed that it was possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of the leach liquor in the first leaching–extraction circuit was 32.57 g/L, and in the 16th cycle the zinc concentration was 8.27 g/L after the solvent extraction. The leach liquor was subjected to solvent extraction, scrubbing and selective stripping for the enrichment of zinc and the removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle was suitable for zinc electrowinning.  相似文献   

14.
酸浸-萃取法从炉渣中回收铜、锌的研究   总被引:2,自引:0,他引:2  
以硫酸-双氧水浸出低品位炉渣, 有效回收了铜和锌。分别进行了pH值、温度、双氧水用量对炉渣中铜锌浸出率的影响研究。研究结果表明:在常压条件下, 当pH=2.5, 浸出温度70 ℃, 双氧水用量150 L/t时, 炉渣中铜和锌的浸出率分别为54.77%和72.33%。用P204作萃取剂, 硫酸作反萃剂, 得到铜回收率为84.97%, 锌回收率为96.47%。  相似文献   

15.
高钙型低品位铜矿酸性浸出动力学研究   总被引:1,自引:0,他引:1  
通过单因素实验及动力学分析研究了低品位氧化铜矿的浸出过程,考察了矿物粒度、浸出温度、硫酸浓度和液固比对浸出过程的影响。结果表明,适宜的浸出条件为: 矿物粒度-0.074 mm粒级占比85%、浸出温度60 ℃、浸出时间120 min、硫酸浓度2.5 mol/L、液固比4∶1,此时铜浸出率为96.23%; CaCO3的存在导致浸出过程硫酸消耗增加; 浸出过程可用未反应核收缩模型来描述,反应速率受固膜界面传质和扩散混合控制,浸出过程活化能为8.78 J/mol。  相似文献   

16.
在高铁生物浸铜液中通入H2S气体, 生成硫化铜渣, 双氧水-硫酸浸出硫化铜渣, 得到硫酸铜溶液, 后经蒸发浓缩、冷却结晶制得硫酸铜。研究结果表明: 当生物浸出液pH=1, 反应温度为30 ℃, 反应时间为3 h时, 在生物浸铜液中通入硫化氢, 铜沉淀率接近100%; 双氧水-硫酸浸出硫化铜渣, 当双氧水与铜物质的量之比为6.4∶1, 反应温度为50 ℃, 液固比为15∶1, 硫酸浓度为3 mol/L, 反应时间为2 h时, 铜浸出率为92.1%; 所得浸出液中硫酸浓度为343.49 g/L, Cu2+浓度为 25.33 g/L, 通过蒸发浓缩、冷却结晶得到纯度为96%的硫酸铜, 其质量达到工业用硫酸铜质量标准(GB437-93)。  相似文献   

17.
采用浮选?浸出工艺处理含铜0.94%的玄武岩型氧化铜矿,该铜矿物氧化率高,嵌布粒度较细,属于低品位难选氧化铜。通过硫化浮选法回收部分氧化铜矿及硫化铜矿,可得到品位为16.2%,回收率为50.7%的浮选铜精矿,通过硫酸浸出法回收浮选尾矿中的细粒级铜矿物,浸出率达87%,此浮选-浸出工艺实现了铜矿物的有效回收。  相似文献   

18.
对低品位硫化铜矿进行试验研究,认为该矿具有一定的细菌浸出性。-20mm粒级矿样柱浸半年时间,铜的浸出率达35.98%,为进行扩大试验及堆浸试验提供了可行的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号