首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1,6‐hexanediamine‐functionalized multi‐walled carbon nanotubes(a‐MWNTs)/polyimide(PI) nanocomposite films were prepared through in‐situ polymerization followed by mixture casting, evaporation, and thermal imidization. To increase the compatibility of carbon nanotubes with the matrix polyimide, a‐MWNTs was used as the filler. According to the results, a‐MWNTs were homogeneously dispersed in the nanocomposite films. With the incorporation of a‐MWNTs, the mechanical properties of the resultant films were improved due to the strong chemical bonding and interfacial interaction between a‐MWNTs and 4,4′‐oxydiphthalic anhydride(ODPA)/4,4′‐Oxydianiline(ODA) polyimide matrix. The thermal stability of the a‐MWNTs/polyimide nanocomposite was also improved by the addition of a‐MWNTs. The electrical tests showed a percolation threshold at about 0.85 vol% and the electrical properties were increased sharply. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

2.
Ultra high molecular weight polyethylene (UHMWPE) is extensively used as a material in various high‐end applications with superior mechanical properties. Carbon nanotubes (CNTs) reinforced UHMWPE (CNT/UHMWPE) nanocomposite is a promising material that can compensate for the weak durability of UHMWPE. In this study, multiwalled carbon nanotubes were oxidized and silanized using acid mixture and 3‐aminopropyltriethoxysilane, respectively, to improve the interfacial strength between CNTs and UHMWPE. The CNT/UHMWPE nanocomposite was fabricated using these oxidized and silanized CNTs. The treatment effect of CNTs on the wear behavior of the CNT/UHMWPE nanocomposites was investigated through wear tests. The oxidization and silanization of CNTs were confirmed by infrared spectroscopy. Scanning electron microscope analysis showed that the silane‐treated CNT/UHMWPE nanocomposites showed better dispersion and interfacial adhesion between UHMWPE and CNTs becaue of the newly formed functional groups on the CNTs. The friction coefficient and wear rate of silanized CNT/UHMWPE nanocomposite were also found to be lower than those of raw UHMWPE and oxidized CNT/UHMWPE nanocomposite. CNTs were functionalized using oxidation and silanization methods to improve the interfacial adhesion between CNTs and UHMWPE. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

3.
The dispersion and stability of carbon nanotubes (CNTs) inside a polymer matrix, especially with a high CNT content, are still big challenges. Moreover, the interaction between CNTs and the polymer matrix should be strong enough to improve the mechanical properties. The efficient dispersion of CNTs is essential for the formation of a uniform distribution of a CNT network in a polymer composite. Polyimide/multiwall CNT nanocomposites were synthesized by in situ polymerization with the aid of a surfactant. A Fourier transform infrared spectroscopy study proved that the surfactant did not hamper the polymerization of the polyimide. The microstructure, storage modulus and electrical conductivity of the nanocomposites were improved using a particular amount of the surfactant. Environmental stability test results showed that the polyimide with 1 wt% of CNTs produced with the aid of the surfactant possessed excellent reliability in high‐temperature and high‐humidity environments. Surfactants were successfully used to obtain fine‐structure polyimide/CNT nanocomposites by in situ polymerization. The enhancement of the mechanical properties was attributed to the incorporation of the surfactant. A percolation of electrical conductivity could be achieved with 1 wt% of CNTs. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The development of carbon nanotube‐reinforced composites has been impeded by the difficult dispersion of the nanotubes in polymers and the weak interaction between the nanofiller and matrices. Efficient dispersion of carbon nanotubes is essential for the formation of a functional nanotube network in a composite matrix. RESULTS: Multiwalled carbon nanotubes (MWNTs) were incorporated into a polyimide matrix to produce MWNT/polyimide nanocomposites. To disperse well the MWNTs in the matrix and thus improve the interfacial adhesion between the nanotubes and the polymer, ‘branches’ were grafted onto the surface of the nanotubes by reacting octadecyl isocyanate with carboxylated MWNTs. The functionalized MWNTs were suspended in a precursor solution, and the dispersion was cast, followed by drying and imidization to obtain MWNT/polyimide nanocomposites. CONCLUSION: The functionalized MWNTs appear as a homogeneous dispersion in the polymer matrix. The thermal stability and the mechanical properties are greatly improved, which is attributed to the strong interactions between the functionalized MWNTs and the polyimide matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
The homogeneous dispersion and strong interfacial interactions of carbon nanomaterials are vital factors on enhancing the properties of polymer composites. Two‐dimensional reduced graphene oxide (rGO) and one‐dimensional carbon nanotubes (CNTs) were first grafted by 4,4′‐oxydianiline (ODA). The successful grafting of ODA onto the rGO and CNTs were confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy. The hybrid carbon nanomaterials of the functionalized CNTs and rGO with different ratios were prepared via a solution‐mixing method, and their dispersion state was investigated. The hybrid carbon nanomaterials with good stability were introduced to polyimide (PI) via in situ polymerization. The morphology and properties of the polymer composites were studied. The results show that much better mechanical and electrical properties of the composites could be achieved in comparison with those of the neat PI. An improvement of 100.7% on the tensile strength and eight orders for the electrical conductivity were achieved at only a 1.0 wt % hybrid content. A significant enhancement effect was attributed to the homogeneous dispersion of the filler, filler–matrix strong interfacial interactions, and unique structure of the hybrid carbon nanomaterials in the composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44575.  相似文献   

6.
Because of their remarkable performance properties and technological promise, polymer nanocomposites reinforced with single‐walled carbon nanotubes (SWCNTs) have attracted considerable attention in the engineering, applied physics, and materials science communities. Recent experimental and computational investigations have shown that the presence of nanoscale defects in CNTs can significantly impact their electrical, mechanical, and thermal properties. In this article, for the first time, we examine the effect of defective CNTs on the interfacial characteristics and mechanical properties of CNT/polyethylene (PE) nanocomposites. Our molecular dynamics simulations show that as few as five vacancy defects in each CNT in a high‐volume‐fraction CNT/PE nanocomposite can decrease the longitudinal Young's modulus of the nanocomposite by as much as 18%, and the shear stress at the CNT/polymer interface by as much as 38%. By accounting for nanoscale defects and their effect on the CNT/polymer interfacial mechanics, our findings provide a practical guide for designing nanocomposites that are capable of attaining a desired set of elastic performance properties. POLYM. COMPOS., 305–314, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Two kinds of polyimides (PIs) were selected as matrices for multiwalled carbon nanotubes (CNTs)‐based nanocomposites. The two PIs were initially synthesized through reactions of a same benzoxazole‐containing diamine with two different dianhydrids. A linear PI was formed from the ether bond‐containing dianhydride, while a nonlinear PI was formed from the ? C(CF3)2? groups containing dianhydride. Optimized dispersion of nanotubes in both kinds of PIs was found to be at a concentration with 0.5 wt % COOH‐CNT, where great enhancement was achieved for both PIs. It was also found that introducing nanotubes into PI matrices aroused more significant increase of Young's modulus and break stress in linear PI than that in nonlinear PI. To determine the key parameters involved in design of PIs for maximum reinforcement efficiency using CNT as the nanofiller, the nanoscopic dispersion state of the nanotubes in diamine solution and their reaction were investigated via morphological and spectroscopic studies. The interfacial interactions between nanotubes and two PI chains were characterized by FT‐IR and Raman spectroscopy. The fracture surface characteristics of two series of CNT/PI nanocomposites were further investigated using SEM. Our findings show that the diamine plays a double role for the in‐situ polymerization, a dispersant to disentangle the CNT agglomerates and a monomer for PI synthesis with dianhydrides. It was also found that geometry and flexibility of PI chains are crucial to determine the interfacial interactions between nanotubes and PI chains. For elucidating the different interfacial characteristics of the two PIs on the surface of CNT, we proposed a model for preferred conformation adopted by a single PI chain on a single CNT. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40479.  相似文献   

8.
Carbon nanotubes (CNTs) based polymer nanocomposites hold the promise of delivering exceptional mechanical properties and multifunctional characteristics. However, the realization of exceptional properties of CNT based nanocomposites is dependent on CNT dispersion and CNT‐matrix adhesion. To this end, we modified MWCNTs by Prato reaction to yield aromatic (phenyl and 2‐hydroxy‐4‐methoxyphenyl) substituted pyrrolidine functionalized CNTs (fCNT1 and fCNT2) and aliphatic (2‐ethylbutyl and n‐octyl) substituted pyrrolidine functionalized CNTs (fCNT3 and fCNT4). The functionalization of CNTs was established by Thermogravimetric analysis (TGA), Raman Spectroscopy, and XPS techniques. Optical micrographs of fCNT epoxy mixture showed smaller aggregates compared to pristine CNT epoxy mixture. A comparison of the tensile results and onset decomposition temperature of fCNT/epoxy nanocomposite showed that aliphatic substituted pyrrolidine fCNT epoxy nanocomposites have higher onset decomposition temperature and higher tensile toughness than aromatic substituted pyrrolidine fCNT epoxy nanocomposites, which is consistent with the dispersion results of fCNTs in the epoxy matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42284.  相似文献   

9.
Peng-Cheng Ma  Ben-Zhong Tang 《Carbon》2010,48(6):1824-1834
The surface, interfacial and dispersion properties of carbon nanotubes (CNTs), and the mechanical properties of the CNT/epoxy composites affected by CNT functionalization are investigated. It is demonstrated that there exists strong correlations between amino-functionalization, dispersion, wettability, interfacial interaction and re-agglomeration behaviour of CNTs and the corresponding mechanical and thermo-mechanical properties of CNT/epoxy composites. The amino-functionalized CNTs exhibit higher surface energy and much better wettability with epoxy resin than the pristine CNTs, and the attached amine molecules arising from the functionalization effectively inhibit the re-agglomeration of CNTs during the curing of resin. These ameliorating effects along with improved interfacial adhesion between the matrix and functionalized CNTs through covalent bonds result in improved flexural and thermo-mechanical properties compared with those without functionalization.  相似文献   

10.
In this study, the effects of functionalization and weight fraction of mutliwalled carbon nanotubes (CNTs) were investigated on mechanical and thermomechanical properties of CNT/Epoxy composite. Epoxy resin was used as matrix material with pristine‐, COOH‐, and NH2‐functionalized CNTs as reinforcements in weight fractions of 0.1, 0.5, and 1.0%. Varying (increasing) the weight fraction and changing type (pristine or functionalized) of CNTs caused increment in Young's modulus and tensile strength as observed during mechanical tests. CNT reinforcement improved thermal stability of the nanocomposites as observed by thermogravimetric analysis. Thermomechanical analysis showed a slight reduction in free volume of the polymer, that is a drop in coefficient of thermal expansion, prior to glass transition temperature (Tg) beside a slight increase in Tg value. Dynamic mechanical analysis indicated an increase in storage modulus and Tg owing to the strength addition of CNT to the matrix alongside the hardener. Scanning electron microscopy analysis of the fractured surface(s) revealed that CNTs were well dispersed with no agglomeration and resulted in reinforcing the matrix. POLYM. COMPOS., 36:1891–1898, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
The objective of this study is to investigate the effects of carbon nanotube (CNT) content, surface modification, and silane cross‐linking on mechanical and electrical properties of linear low‐density polyethylene/multiwall CNT nanocomposites. CNTs were functionalized by vinyltriethoxysilane to incorporate the ─O─C2H5 functional groups and were melt‐blended with polyethylene. Silane‐grafted polyethylene was then moisture cross‐linked. Silanization of CNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and EDX analysis. Hot‐set test results showed that silane cross‐linking of polyethylene and incorporation of modified CNTs into polyethylene led to an increase in cross‐linking density and the number of entanglements resulting in a decrease in elongation. It was found that the addition of pristine multiwall carbon nanotubes (MWCNTs) and functionalized MWCNTs does not affect silane cross‐linking density. Silane modification resulted in a stronger adhesion of the silane cross‐linked LLDPE to silanized MWCNTs according to scanning electron microscopy micrographs. Additionally, the electrical tests revealed that the silane modification of CNTs results in an improvement in electrical properties of nanocomposites, while silane cross‐linking will not have an effect on electrical properties. Rheological properties of MWCNT/LLDPE nanocomposites have been studied thoroughly and have been discussed in this study. Moreover, according to TGA test results, modification of the MWCNTs led to a better dispersion of them in the LLDPE matrix and consequently resulted in an improvement in thermal properties of the nanocomposites. Crystallinity and melting properties of the nanocomposites have been evaluated in detail using DSC analysis. J. VINYL ADDIT. TECHNOL., 26:113–126, 2020. © 2019 Society of Plastics Engineers  相似文献   

12.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879.  相似文献   

13.
A series of polyimide‐based nanocomposites containing polyimide‐grafted multi‐walled carbon nanotubes (PI‐g MWCNTs) and silane‐modified ceramic (aluminium nitride (AlN)) were prepared. The mechanical, thermal and electrical properties of hybrid PI‐g MWCNT/AlN/polyetherimide nanocomposites were investigated. After polyimide grafting modification, the PI‐g MWCNTs showed good dispersion and wettability in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The utilization of the hybrid filler was found to be effective in increasing the thermal conductivity of the composites due to the enhanced connectivity due to the high‐aspect‐ratio MWCNT filler. The use of spherical AlN filler and PI‐g MWCNT filler resulted in composite materials with enhanced thermal conductivity and low coefficient of thermal expansion. Results indicated that the hybrid PI‐g MWCNT and AlN fillers incorporated into the polyetherimide matrix enhanced significantly the thermal stability, thermal conductivity and mechanical properties of the matrix. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
For the preparation of high‐quality polymeric carbon nanocomposites, it is required that carbon nanotubes are fully compatible with matrix polymers. For this purpose, amino‐functionalized multiple‐walled carbon nanotubes (a‐MWNTs) were synthesized. The a‐MWNTs/polyimide nanocomposite films were prepared through in situ polymerization. According to the spectroscopic characterizations, the a‐MWNTs were homogeneously dispersed in the nanocomposite films as the acid‐functionalized MWNTs. The mechanical properties of the polyimide composite were also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Multiwalled carbon nanotubes (MWNTs) were functionalized with pyrogallol. The functionalized MWNTs were well‐dispersed in the epoxy/curing agent/ethanol solution, as demonstrated by UV‐vis spectra and optical micrographs. Epoxy resin/MWNTs composites were prepared via solution mixing method. The cure behavior was characterized using differential scanning calorimetry. Pyrogallol‐functionalized carbon nanotubes (CNTs) reacted with the epoxy through the mediation reaction of pyrogallol with the curing agent, leading to the interfacial bonding between the functionalized carbon nanotubes (CNTs) and the resin matrix. Due to the excellent dispersion and interfacial bonding, the mechanical strength and electrical conductivity of the epoxy resin/CNTs composites have been improved. POLYM. ENG. SCI. 56:1079–1085, 2016. © 2016 Society of Plastics Engineers  相似文献   

17.
Novel single‐source‐precursors (SSPs), namely carbon nanotube modified poly (methylvinyl) silazane (CNTs‐HTT 1800), were synthesized via amidation reaction of poly (methylvinyl) silazane (HTT 1800) with carboxylic acid functionalized carbon nanotubes (CNTs‐COOH) at the assistance of ZnCl2 catalyst, which was confirmed by means of Fourier transform infrared spectra (FT IR) and transmission electron microscopy (TEM). Besides, the TEM results unambiguously show the homogeneous distribution of the CNTs in the matrix of SSPs while serious aggregation of the CNTs in the matrix of physically‐blended‐precursor. Crack‐free monolithic silicon carbonitride modified by carbon nanotubes ceramic nanocomposites (CNTs‐SiCN) were prepared through pyrolysis of the obtained SSP green bodies at 1000°C. Due to the strong influence of polymer structure on the microstructure of final ceramics, the SSP‐derived CNTs‐SiCN nanocomposites clearly show the homogeneous distribution of the CNTs in the SiCN matrix while the physically‐blended‐precursor derived CNTs‐SiCN nanocomposites exhibit serious aggregation and entangling of the CNTs in the SiCN matrix. With the same CNT content in the feed, the SSP‐derived CNTs‐SiCN nanocomposites possess significant improvements of electromagnetic (EM) absorbing properties compared to those from physically‐blended‐precursors, due to the quality of the dispersion of CNTs in the ceramic matrices.  相似文献   

18.
This paper reports the results of studies on the effect of phenol functionalization of carbon nanotubes (CNTs) on the mechanical and dynamic mechanical properties of natural rubber (NR) composites. Fourier transform infrared spectrometry (FTIR) indicates characteristic peaks for ether and aromatic rings in the case of phenol functionalized CNT. Although differential scanning calorimetric (DSC) studies show no changes in the glass‐rubber transition temperature (Tg) of NR in the nanocomposites due to surface modification of CNT, dynamic mechanical studies show marginal shifting of Tg to higher temperature, the effect being pronounced in the case of functionalized CNT. Stress‐strain plots suggest an optimum loading of 5 phr CNT in NR formulations and the phenolic functionalization of CNT does not affect significantly the stress‐strain properties of the NR nanocomposites. The storage moduli register an increase in the presence of CNT and this increase is greater in the case of functionalized CNT. Loss tangent showed a decrease in the presence of CNT, and the effect is more pronounced in the case of phenol functionalized CNT. Transmission electron microscopy (TEM) reveals that phenol functionalization causes improvement in dispersion of CNT in NR matrix. This is corroborated by the increase in electrical resistivity in the case of phenol functionalized CNT/NR composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
We have studied an effect of three types of modifications of carbon nanotubes (CNTs) on dispersion and mechanical properties of final epoxy‐amine based nanocomposites. First approach includes end‐walled covalent chemical modification at the ends of nanotubes. The second one is side‐walled covalent chemical modification along the whole length of nanotubes. The third procedure is noncovalent, physical modification done by the CNT surface coating with polyaniline. The modification of nanotubes was determined by X‐ray photoelectron spectroscopy. The prepared epoxy‐amine nanocomposites were characterized by dynamic‐mechanical analysis, tensile testing, light microscopy, transmission electron microscopy, and thermogravimetry. We observed an improvement of the mechanical properties and the thermal stability by addition of the carbon nanotubes to the epoxy matrix. The strong interactions between the nanotube and the polymer matrix were discovered in the nanocomposites with physically modified nanotubes. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
Multi‐walled carbon nanotubes (CNTs) and cellulose nanofibers (CNFs) reinforced shape memory polyurethane (PU) composite fibers and films have been fabricated via extrusion and casting methods. Cellulose nanofibers were obtained through acid hydrolysis of microcrystalline cellulose. This treatment aided in achieving stable suspensions of cellulose crystals in dimethylformamide (DMF), for subsequent incorporation into the shape memory matrix. CNTs were covalent functionalized with carboxyl groups (CNT‐COOH) and 4,4′‐methylenebis (phenylisocyanate) (MDI) (CNT‐MDI) to improve the dispersion efficiency between the CNT and the polyurethane. Significant improvement in tensile modulus and strength were achieved by incorporating both fillers up to 1 wt% without sacrificing the elongation at break. Electron microscopy was used to investigate the degree of dispersion and fracture surfaces of the composite fibers and films. The effects of the filler (type and concentration) on the degree of crystallinity and thermal properties of the hard and soft segments that form the PU sample were studied by calorimetry. Overall, results indicated that the homogeneous dispersion of nanotubes and cellulose throughout the PU matrix and the strong interfacial adhesion between nanotubes and/or cellulose and the matrix are responsible for the enhancement of mechanical and shape memory properties of the composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号