首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2018篇
  免费   93篇
  国内免费   5篇
电工技术   25篇
综合类   22篇
化学工业   521篇
金属工艺   45篇
机械仪表   37篇
建筑科学   147篇
矿业工程   3篇
能源动力   34篇
轻工业   181篇
水利工程   13篇
石油天然气   4篇
无线电   139篇
一般工业技术   434篇
冶金工业   129篇
原子能技术   18篇
自动化技术   364篇
  2023年   24篇
  2022年   16篇
  2021年   62篇
  2020年   39篇
  2019年   50篇
  2018年   48篇
  2017年   42篇
  2016年   54篇
  2015年   52篇
  2014年   77篇
  2013年   110篇
  2012年   101篇
  2011年   185篇
  2010年   107篇
  2009年   123篇
  2008年   114篇
  2007年   93篇
  2006年   98篇
  2005年   82篇
  2004年   75篇
  2003年   61篇
  2002年   55篇
  2001年   53篇
  2000年   32篇
  1999年   31篇
  1998年   37篇
  1997年   25篇
  1996年   23篇
  1995年   20篇
  1994年   28篇
  1993年   20篇
  1992年   14篇
  1991年   20篇
  1990年   16篇
  1989年   16篇
  1988年   11篇
  1987年   10篇
  1986年   5篇
  1985年   10篇
  1984年   11篇
  1983年   8篇
  1981年   7篇
  1980年   4篇
  1977年   4篇
  1976年   4篇
  1974年   4篇
  1972年   4篇
  1971年   4篇
  1965年   3篇
  1931年   3篇
排序方式: 共有2116条查询结果,搜索用时 20 毫秒
1.
Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high-temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure-assisted sintering (PAS) are a possible future way for a cost-effective mass-production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape-cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab-direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry-pressed, pressureless-sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry-pressed reference (30 MPa) from the same powder.  相似文献   
2.
We consider large-scale dynamical systems in which both the initial state and some parameters are unknown. These unknown quantities must be estimated from partial state observations over a time window. A data assimilation framework is applied for this purpose. Specifically, we focus on large-scale linear systems with multiplicative parameter-state coupling as they arise in the discretization of parametric linear time-dependent partial differential equations. Another feature of our work is the presence of a quantity of interest different from the unknown parameters, which is to be estimated based on the available data. In this setting, we employ a simplicial decomposition algorithm for an optimal sensor placement and set forth formulae for the efficient evaluation of all required quantities. As a guiding example, we consider a thermo-mechanical PDE system with the temperature constituting the system state and the induced displacement at a certain reference point as the quantity of interest.  相似文献   
3.
Software and Systems Modeling - Model-driven engineering (MDE) has proved to be a useful approach to cope with today’s ever-growing complexity in the development of software systems;...  相似文献   
4.
5.
6.
7.
Essential oils (EO) are complex secondary metabolites, which are produced by aromatic plants and identified by their powerful odors. Present studies on EO and their isolated ingredients have drawn the attention of researchers to screen these natural products and evaluate their effect on the cardiovascular system. Some EO, and their active ingredients, have been reported to improve the cardiovascular system significantly by affecting vaso-relaxation, and decreasing the heart rate and exert a hypotension activity. Several mechanisms have been proposed for the role of EO and their main active components in promoting the health of the cardiovascular system. The objective of this review is to highlight the current state of knowledge on the functional role of EO extracted from plants for reducing the risk of cardiovascular diseases and their mechanisms of action. Research on EO has the potential to identify new bioactive compounds and formulate new functional products for the treatment of cardiovascular diseases such as arterial hypertension, angina pectoris, heart failure, and myocardial infarction.  相似文献   
8.
NiMn2O4+δ thermistor thick films have been successfully deposited by the so-called Aerosol Deposition Method (ADM) at room temperature on alumina substrates, Si-wafers, as well as on special planar four-wire interdigital electrode structures for high-precision electrical characterization. The NTCR films are homogeneous, completely dense and scratch resistant. Both as-deposited and tempered, the NTCR films exhibit a cubic spinel structure. Between 25 °C and 90 °C, the NTCR film resistance behaves as it is typical for variable range hopping (VRH) with parabolic density of states. As a result of moderate film tempering, the thermistor constant B and the specific resistance at 25 °C (ρ25) decrease from 4250 K to 4020 K and 65 Ω·m to 40 Ω·m respectively, and are close to bulk values. In combination with the excellent reproducibility of the ρ25 and B values, AD processing of films appears to be a promising alternative for classical ceramic bulk processes.  相似文献   
9.
The composites based on polylactide (PLA) and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with the addition of antibacterial particles: silver (Ag) and copper oxide (CuO) are characterized. Basic mechanical properties and biodegradation processes, as well as biocompatibility of materials with human cells are determined. The addition of Ag or CuO to the polymers do not significantly affect their mechanical properties, flammability, or biodegradation rate. However, several differences between the base materials are observed. PLA‐based composites have higher tensile and impact strength values, while PHBV‐based ones have a higher modulus of elasticity, as well as better mechanical properties at elevated temperatures. Concerning biocompatibility, each of the tested materials support the growth of fibroblasts over time, although large differences are observed in the initial cell attachment. The analysis of hydrolytic degradation effects on the structure of materials shows that PHBV degrades much faster than PLA. The results of this study confirm the good potential of the investigated biodegradable polymer composites with antibacterial particles for future biomedical applications.  相似文献   
10.
Oxide fibers preparation and manufacturing capabilities at Fraunhofer-Center HTL are introduced, showing the development and preparation of oxide ceramic fibers from lab scale to pilot scale up to near production scale. As a specific example, the development of an aluminosilicate fiber with mullite composition is discussed in more detail. Fiber development started from nonaqueous sol-gel precursors in the early lab scale. With increasing fiber spinning volume, precursors were switched to water-soluble systems. Transformation from green fiber to ceramic fiber was monitored by thermogravimetric and differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The evolution of ceramic phases, microstructure formation, and the effects on tensile strength and Young's modulus were investigated. Weibull statistics and fracture analysis helped to understand the results. Next step will be the transition from large lab scale to pilot scale, demonstrating manufacturing capability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号