首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
In this article, a robust control scheme for trajectory tracking of very lightweight single-link flexible arms is discussed. Since the payload is one of the most variable parameters in a manipulator, the control is designed to achieve an accurate tracking of the desired tip trajectory for any value of the robot tip mass, or even for a tip mass changing during the maneuver. The proposed controller also guarantees stability for small uncertainties in parameters such as stiffness or motor friction. In addition, the effect of spillover on the performance of the controlled system is analyzed, and it is proven that stability and a good performance are preserved independently from the non-modeled high-order dynamics. The control scheme is based on a two nested loops structure. Each of these loops implements a Generalized Proportional Integral (GPI) controller. Moreover, the outer loop includes a disturbance compensation term based on a disturbance observer, which achieves the required insensitivity to payload changes. The theoretical analysis is supported by an extensive set of numerical simulations which shows controlled system response when variations in the robot payload, or dynamics neglected in the controller design, are considered. Finally, some experiments have been carried out in order to test the performance of the tip trajectory tracking of the proposed control system.  相似文献   

2.
This article describes a new control scheme designed for a three degree of freedom (3‐DOF) flexible robot. The control scheme consists of two multi variable control loops. The inner loop is the motor's position control system, while the outer loop controls the robot tip's position, thus canceling vibrations which are originated by the structural flexibility of the manipulator during movement. As it will be shown, the outer control loop is robust to payload variations. The outer loop performance is based on a perfect cancelation of the inner loop dynamics. The effects of not achieving such perfect cancelation are also studied, and rules for designing a robust controller in this case are developed. Simulations assuming different payloads have been carried out with successful results for trajectory tracking. Trajectory tracking with a variable payload is also achieved.  相似文献   

3.
The hybrid control scheme is proposed to stabilize the vibration of a two-link flexible manipulator while the robustness of Variable Structure Control (VSC) developed for rigid manipulators is maintained for controlling the joint angles. The VSC law alone, which is designed to accomplish only the asymptotic decoupled joint angle trajectory tracking, does not guarantee the stability of the flexible mode dynamics of the links. In order to actively suppress the flexible link vibrations, hybrid trajectories for the VSC are generated using the virtual control force concept, so that robust tracking control of the flexible-link manipulator can also be accomplished. Simulation results confirm that the proposed hybrid control scheme can achieve more robust tracking control of two-link flexible manipulator than the conventional control scheme in the presence of payload uncertainty.  相似文献   

4.
Hybrid Control Scheme for Robust Tracking of Two-Link Flexible Manipulator   总被引:1,自引:0,他引:1  
A hybrid control scheme is proposed to stabilize the vibration of a two-link flexible manipulator while robustness of Variable Structure Control (VSC) developed for rigid manipulators is maintained for controlling the joint angles. The VSC law alone, which is designed to accomplish only the asymptotic decoupled joint angle trajectory tracking, does not guarantee the stability of the flexible mode dynamics of the links. In order to actively suppress the flexible link vibrations, hybrid trajectories for the VSC are generated using the virtual control force concept, so that robust tracking control of the flexible-link manipulator can also be accomplished. Simulation results confirm that the proposed hybrid control scheme can achieve more robust tracking control of two-link flexible manipulator than the conventional control scheme in the presence of payload uncertainty.  相似文献   

5.
针对机械臂受内部摩擦和时变扰动等不确定性因素的影响,其轨迹跟踪控制系统的跟踪精度会下降,且影响系统的稳定性,提出一种基于径向基函数神经网络的自适应控制方法。首先,利用RBF神经网络采用离线训练和在线学习的方式对机械臂的动力学模型进行辨识;其次针对机械臂控制系统中的摩擦,设计RBF神经网络自适应控制算法对其进行逼近得到补偿控制量。针对时变扰动和神经网络逼近误差设计鲁棒项,以克服众多不确定性因素带来的影响,同时通过构造李亚普诺夫函数对所设计的控制系统进行稳定性分析;最后,仿真实验结果证明提出的控制方法具有较高的跟踪精度、抗干扰能力和较强的鲁棒性。  相似文献   

6.
In this paper, an adaptive neural network (NN) switching control strategy is proposed for the trajectory tracking problem of robotic manipulators. The proposed system comprises an adaptive switching neural controller and the associated robust compensation control law. Based on the Lyapunov stability theorem and average dwell-time approach, it is shown that the proposed control scheme can guarantee tracking performance of the robotic manipulators system, in the sense that all variables of the closed-loop system are bounded and the effect due to the external disturbance and approximate error of radical basis function (RBF) NNs on the tracking error can be converged to zero in an infinite time. Finally, simulation results on a two-link robotic manipulator show the feasibility and validity of the proposed control scheme.  相似文献   

7.
This study addresses the dynamic modelling and indirect disturbance compensation control of planar parallel robotic motion platform with three degrees of freedom (3-DOF) in the presence of parameter uncertainties and external disturbances. The proposed planar parallel motion platform is a singularity free manipulator and has three manipulator legs located on the same plane linked with a moving platform. Of the three aforementioned manipulator legs, two legs have a prismatic–revolute–prismatic (PRP) joint configuration each with only one prismatic joint deliberated to be active, and the other leg consists of prismatic–revolute–prismatic (PPR) joint configuration with one active prismatic joint. The closed form kinematic solution (both forward and reverse kinematics) for the platform has been obtained in completion. In addition, the dynamic model for the platform has been communicated using the energy based Euler–Lagrangian formulation method. The proposed controller is based on a computer torque control with disturbance compensation integrated with it. Disturbance vectors comprising disturbances due to parameter variations, payload variations, frictional effects and other additional effects have been estimated using an extended Kalman filter (EKF). The EKF proposed for this specific platform uses only position and orientation measurements for estimation and noise mitigation. Simulations with a characteristic trajectory are presented and the results have been paralleled with traditional controllers such as the proportional integral derivative (PID) controller and computed torque controller (CTC). The results demonstrate satisfactory tracking performance for the proposed controller in the presence of parameter uncertainties and external disturbances.  相似文献   

8.
针对水下机械臂动力学模型建模复杂且滑模控制的抖振问题,利用Lagrange法和Morison方程精准建立二连杆串联水下机械臂的动力学模型,对模型中参数的不确定项使用4个RBF神经网络分别进行逼近,并且对摩擦项使用模糊控制进行补偿的方法,精准迅速地实现了对水下机械臂控制系统跟踪控制。通过进行仿真分析,基于神经网络和模糊补偿控制的方法与滑模控制、整体RBF神经网络控制和分块RBF神经网络控制相比,控制系统的平均误差分别降低了85.5%、71.8%、93.1%。结果表明,此方法有效降低了控制系统的跟踪误差,并同时提高了稳态性和抗干扰性。  相似文献   

9.
基于模糊变结构的机械臂控制   总被引:7,自引:0,他引:7  
现有的机械臂模糊变结构控制方法大都计算复杂或需要检测滑模面的微分信号.本文将机械臂模型分为确定部分和不确定部分进行研究,对确定部分采用一般反馈控制,对不确定部分采用变结构集中补偿控制,为了消除变结构控制器的抖震引入模糊控制方法,将滑模面作为模糊控制器的输入,补偿控制器权值作为输出.本方案不仅不需要检测滑模面微分信号,而且计算简单,易于实现.仿真结果表明,在存在模型误差和外部扰动的情况下,该方案既能达到快速跟踪,又能很好的消除控制器的抖震.  相似文献   

10.
本文针对系统中存在的关节摩擦、动力学参数不确定性和外部负载干扰等因素引起的柔性机械臂系统控制性能下降的问题,提出了一种基于扰动和摩擦补偿的非奇异快速终端滑模控制方法(NFTSMC-DE-FC).首先,设计扰动估计器(DE)对系统未知动态参数和负载干扰进行估计.然后,针对扰动估计器不能精确估计的关节摩擦力矩进行辨识.最后,利用滑模控制技术设计非奇异快速终端滑模控制器,并将扰动估计值和摩擦力辨识值以前馈的方式进行补偿,实现对柔性机械臂系统给定参考轨迹跟踪的准确性以及对外界扰动的鲁棒性.值得注意的是,与传统只使用扰动估计器的方法相比,本文考虑到了摩擦力等非线性因素的影响,并利用辨识技术对摩擦力进行辨识,提高了控制精度.利用Lyapunov稳定性定理从理论上证明了所设计的控制器可以保证闭环系统的稳定性.实验结果表明,相较于非奇异快速终端滑模控制方法(NFTSMC)和基于扰动估计器的非奇异快速终端滑模控制方法(NFTSMC-DE),所提方法提高了柔性机械臂系统的轨迹跟踪性能.  相似文献   

11.
杨超  郭佳  张铭钧 《机器人》2018,40(3):336-345
研究了作业型AUV (自主水下机器人)的轨迹跟踪控制问题.实际作业中,水下机械手展开作业过程将引起AUV动力学性能变化,进而影响AUV轨迹跟踪控制;并且水流环境干扰亦将影响AUV轨迹跟踪控制.针对上述AUV轨迹跟踪控制问题,提出一种基于RBF (径向基函数)神经网络的AUV自适应终端滑模运动控制方法.该方法在李亚普诺夫稳定性理论框架下,采用RBF网络对机械手展开引起的AUV动力学性能变化和水流环境干扰进行在线逼近,并结合自适应终端滑模控制器对神经网络权值和AUV控制参数进行自适应在线调节.通过李亚普诺夫稳定性理论,证明AUV系统轨迹跟踪误差一致稳定有界.针对滑模控制项引起的控制量抖振问题,提出一种变滑模增益的饱和连续函数滑模抖振降低方法,以降低滑模控制量抖振.通过AUV实验样机的艏向和垂向的轨迹跟踪实验,验证了本文AUV系统控制方法和滑模降抖振方法的有效性.  相似文献   

12.
A kinematically undetermined cable suspension manipulator moves a payload platform in space by several cables with computer-controlled winches, whereby the position of the payload platform is not determined by the lengths of the cables. Trajectory tracking control of the payload platform is achieved by means of the concept of flat systems. A flat system has the property that the state variables and the control inputs can be algebraically expressed in terms of the so-called flat output and a finite number of time derivatives of the flat output. Its application to kinematically undetermined manipulators represents a generalization of computed-torque control. The control forces are algebraically calculated from the desired trajectories of the payload platform and their time derivatives up to the fourth order leading to a feedforward control strategy. Asymptotically stable tracking behavior is achieved by exact linearization of the nonlinear dynamics by means of a so-called quasi-static state feedback. The procedure is described for the trajectory tracking control of the prototype three-cable suspension manipulator CABLEV.  相似文献   

13.
一种新的机械手变结构控制方案*   总被引:2,自引:1,他引:1  
本文提出了一种用于机械手轨迹跟踪的变结构控制方案,通过引入特殊的滑动状态误差修正项和模型偏差补偿项,控制系统对系统的参数变化及外部扰动具有了较强的鲁棒性。同时控制无抖动,本文的控制方案能实现高精度的快速轨迹跟踪,以PUMA—560机械手的前3个关节为例给出了仿真结果。  相似文献   

14.
The purpose of this study is to control the position of an underactuated underwater vehicle manipulator system (U‐UVMS). It is possible to control the end‐effector using a regular 6‐DOF manipulator despite the undesired displacements of the underactuated vehicle within a certain range. However, in this study an 8‐DOF redundant manipulator is used in order to increase the positioning accuracy of the end‐effector. The redundancy is resolved according to the criterion of minimal vehicle and joint motions. The underactuated underwater vehicle redundant manipulator system is modeled including the hydrodynamic forces for the manipulator in addition to those for the autonomous underwater vehicle (AUV). The shadowing effects of the bodies on each other are also taken into account when computing the hydrodynamic forces. The Newton‐Euler formulation is used to derive the system equations of motion including the thruster dynamics. In order to establish the end‐effector trajectory tracking control of the system, an inverse dynamics control law is formulated. The effectiveness of the control law even in the presence of parameter uncertainties and disturbing ocean currents is illustrated by simulations.  相似文献   

15.
Sliding mode control is a very attractive control scheme because of its robustness against both structured and unstructured uncertainties as well as external disturbances. In this way, it has been widely employed for the dynamic positioning of remotely operated underwater vehicles. Nevertheless, in such situations the discontinuities in the control law must be smoothed out to avoid the undesirable chattering effects. The adoption of properly designed boundary layers has proven effective in completely eliminating chattering, however, leading to an inferior tracking performance. This work describes the development of a dynamic positioning system for remotely operated underwater vehicles. The adopted approach is primarily based on the sliding mode control strategy and enhanced by an adaptive fuzzy algorithm for uncertainty/disturbance compensation. Using the Lyapunov stability theory and Barbalat’s lemma, the boundedness and convergence properties of the closed-loop signals are analytically proven. The performance of the proposed control scheme is also evaluated by means of numerical simulations.  相似文献   

16.
Most control methods of underwater vehiclemanipulator systems (UVMS) are based on the computed torque method that is used for underwater robotic vehicles. We have proposed a resolved acceleration control (RAC) method for UVMS. In this article, we propose a disturbance compensation control method for both vehicle and manipulator based on the RAC method. Experimental results using an underwater robot with a vertical planar 2-link manipulator show that the proposed control method has good control performance.  相似文献   

17.
A robust control method of a two-link flexible manipulator with neural networks based quasi-static distortion compensation is proposed and experimentally investigated. The dynamics equation of the flexible manipulator is divided into a slow subsystem and a fast subsystem based on the assumed mode method and singular perturbation theory. A decomposition based robust controller is proposed with respect to the slow subsystem, and H control is applied to the fast subsystem. The overall closed-loop control is determined by the composite algorithm that combines the two control laws. Furthermore, a neural network compensation scheme is also integrated into the control system to compensate for quasi-static deflection. The proposed control method has been implemented on a two-link flexible manipulator for precise end-tip tracking control. Experimental results are presented in this paper along with concluding remarks.  相似文献   

18.
针对六自由度小型四旋翼无人机在轨迹跟踪控制过程中,单一控制器构成的控制系统存在外部未知干扰,系统的鲁棒性以及轨迹跟踪精度容易产生较大的波动问题,该文章提出了一种基于固定时间扰动观测器的全闭环控制方案,即针对位置与姿态的双闭环控制;首先利用固定时间理论设计了两个扰动观测器,在固定时间内对扰动做出估计并进行补偿;在此观测器对扰动值的精确估计基础之上,设计了两个具有扰动补偿能力的非线性跟踪控制器;李雅普诺夫稳定性理论证明了所述方法的有效性;仿真实验中,为对比所述控制方法的有效性,同时采用传统单一控制器构成的无人机控制系统进行对比分析;在无人机质量为m=1.44 kg、环境重力加速度为g=9.8 m/s2以及其他模型参数一致的前提下,进行大量的仿真实验验证了所提出的基于固定时间扰动观测器的扰动补偿控制系统,能够保证小型四旋翼无人机六自由度受到复杂外部干扰时准确估计出外部干扰值,并实现无人机进行高精度轨迹跟踪控制,且轨迹跟踪精度与抗扰性能皆优于传统单一控制器构成的无人机控制系统.  相似文献   

19.
本文提出了一种基于约束预测控制的机械臂实时运动控制方法.该控制方法分为两层,分别设计了约束预测控制器和跟踪控制器.其中,约束预测控制器在考虑系统物理约束的条件下,在线为跟踪控制器生成参考轨迹;跟踪控制器采用最优反馈控制律,使机械臂沿参考轨迹运动.为了简化控制器的设计和在线求解,本文采用输入输出线性化的方式简化机械臂动力学模型.同时,为了克服扰动,在约束预测控制器中引入前馈策略,提出了带前馈一反馈控制结构的预测控制设计.因此,本文设计的控制器可以使机械臂在满足物理约束的条件下快速稳定地跟踪到目标位置.通过在PUMA560机理模型上进行仿真实验,验证了预测控制算法的可行性和有效性.  相似文献   

20.
为了给卫星天线展开臂的展开特性测试提供真实的零重力地面仿真环境,设计了卫星天线随动吊挂重力补偿系统.首先设计了与卫星天线展开臂结构相同的3轴随动吊挂机械臂,对卫星天线展开臂进行位置跟随,并通过有限元方法分析其受载时的位置精度;然后根据导纳控制方法设计出随动机械臂的力跟随控制器,采用基于位置内环的PD (比例-微分)力控制策略设计出拉力系统对吊索拉力的控制算法;最后通过实验考核了随动吊挂机械臂各关节对在轨运行模式下的天线展开臂相应关节的位置跟随性能和重力平衡补偿.实验结果表明各轴位置跟随误差均不超过±0.03°,稳定运行时吊索张力控制偏差均小于1.2% F.S.(全量程),在天线展开机械臂的展开过程中实现了较高精度的位置跟随和重力补偿,满足天线展开测试要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号