首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
采用化学镀方法制取Ni-P非晶合金镀层。测定了镀层的耐蚀性和极化曲线,研究了热处理对非晶态Ni-P合金耐蚀性能的影响。结果表明:在非氧化性酸及中性介质中,Ni-P非晶合金镀层具有优良的耐蚀性,热处理使其耐蚀性降低。  相似文献   

2.
在ZM5镁合金表面制备了化学镀Ni-P合金镀层,并对其微观形貌、成分、相结构及电化学腐蚀行为进行了分析。结果表明:化学镀Ni-P合金镀层的厚度约为25μm,表面均匀、平整,内部致密无缺陷,与基体结合紧密,其结构为非晶态。与ZM5镁合金基体相比,化学镀Ni-P合金镀层的自腐蚀电位正移了1.171 V,自腐蚀电流密度减小了近3个数量级,表现出良好的耐蚀性。化学镀Ni-P合金镀层在阴极极化电位和自腐蚀电位下的阻抗谱均由两个容抗弧半圆组成,表现为均匀腐蚀。而阳极电位下化学镀Ni-P合金镀层的阻抗谱由容抗弧和Warburg阻抗组成,表现为局部腐蚀。化学镀Ni-P合金镀层在自腐蚀电位和阴极极化电位下工作能显著提高耐蚀性,并且在自腐蚀电位下的耐蚀性更好。而化学镀Ni-P合金镀层在阳极极化电位下的耐蚀性较差,不利于镀镍镁合金的长期使用。  相似文献   

3.
崔以刚 《电镀与环保》2020,(1):31-32,33
在机械传动轴用40Cr钢基体上制备了化学镀Ni-P合金镀层,并对化学镀Ni-P合金镀层的厚度、表面粗糙度、结构、表面形貌及耐蚀性进行了研究。结果表明:化学镀Ni-P合金镀层属于立方结构,结晶度较好;化学镀Ni-P合金镀层表面呈现出均匀、致密的颗粒状形貌,厚度约为6.5 pm;化学镀Ni-P合金镀层的自腐蚀电位为一0.305 V,自腐蚀电流密度为36.72 ptA/cm2,耐蚀性较好。  相似文献   

4.
化学镀Ni-P-PTFE层的硫化气氛中耐蚀性的研究   总被引:2,自引:0,他引:2  
吴昊 《电镀与涂饰》1999,18(3):32-36
化学镀Ni-P-PTFE层常用于一些特定的场合.为提高其耐蚀性,使其能应用于特殊的腐蚀环境.采用了以Ni-P合金层为底层,Ni-P-PTFE层为面层的双层组合.研究了镀层在模拟硫化气氛中的耐蚀性及热处理对镀层耐蚀性的影响.结果表明:Ni-P合金层采用此双层组合镀层能满足耐硫化气氛腐蚀的要求.此外,热处理对镀层耐蚀性有不利影响,故不宜对镀层进行热处理.  相似文献   

5.
采用电沉积法制备了不同锡含量的Ni-Sn合金.通过扫描电镜、X-射线衍射分析了镀层的形貌和结构.采用阳极极化曲线、交流阻抗测试、浸泡实验研究了Ni-Sn合金在人工海水中的腐蚀行为.结果表明:所制得的Ni-Sn合金镀层为Ni相晶态结构,Ni-7.72wt%Sn合金镀层在人工海水中的腐蚀电位最正,电化学反应电阻最大,耐蚀性最佳.浸泡实验结果表明,Ni-7.72wt%Sn合金在人工海水中耐蚀性与SUS304相近,优于Ni-P合金.  相似文献   

6.
对比了Ni-P合金镀层和Ni-Cu-P合金镀层的耐蚀性及硬度。研究了热处理温度及保温时间对两种镀层耐蚀性的影响。结果表明:与Ni-P合金镀层相比,Ni-Cu-P合金镀层表面更加致密,耐蚀性更好;当热处理温度为200~300℃时,Ni-P合金镀层和Ni-Cu-P合金镀层的硬度均随保温时间的延长而增大;当热处理温度为400℃时,Ni-P合金镀层和Ni-Cu-P合金镀层的硬度均随保温时间的延长先增大后减小。  相似文献   

7.
对化学镀Ni-P合金镀层进行铬酸盐钝化处理,并研究了钝化温度和钝化时间对化学镀NiP合金镀层耐蚀性的影响。结果表明:钝化处理可以显著提高化学镀Ni-P合金镀层的耐蚀性。经40g/L重铬酸钾钝化的化学镀Ni-P合金镀层的耐蚀性明显优于经5g/L重铬酸钾钝化的化学镀Ni-P合金镀层的耐蚀性。随着钝化温度的升高或钝化时间的延长,化学镀Ni-P合金镀层的耐蚀性增强。  相似文献   

8.
化学镀Ni-P合金在食品中耐蚀行为研究   总被引:1,自引:0,他引:1  
本文在确定化学镀Ni-P合金工艺条件的基础上,用静态失重法探讨了镀层在苹果汁,酸白菜,西红柿汁,白醋,茶等五种食品中腐蚀速度。用X射线衍射和阳极极化曲线分析了热处理对镀层耐蚀性的影响。结果表明:Ni-P合金在上述几种食品中耐蚀性较好,经预镀的镀层耐蚀性比.未预镀的镀层耐蚀性更好,镀层经热处理后耐蚀性反而下降。  相似文献   

9.
不锈钢球阀化学镀Ni-P合金镀层研究   总被引:5,自引:0,他引:5  
采用与普通钢同样的方法对不锈钢球阀进行顸处理。然后化学镀Ni-P合金镀层。扫描电镜照片显示Ni-P合金镀层呈胞状结构。镀层组成分析表明,Ni、P的质量分数分别为88.37%和11.63%,其原子分数分别为80.04%和19.96%。研究了不锈钢基体、镀态和经过不同温度回火的涂覆层的显微硬度、结合力及腐蚀性能。结果表明,涂覆层的显微硬度随回火温度的升高而增大,在350℃时达到最大值,为1000Hy。显微硬度由高到低依次为:经过回火后的涂覆层、镀态、不锈钢基体。镀层与基体的结合力随镀层回火温度的升高呈现先升后降的趋势,在300℃时达到最大值,为42.3N。在质量分数分别为10%的盐酸、硫酸和盐酸与硫酸的混合酸中的腐蚀实验证明,Ni-P合金镀层的耐蚀性远远高于不锈钢基体,而经过回火后的涂覆层其耐蚀性比未经回火的低。因此,可以根据不同的性能要求。对不锈钢球阀选择不同的处理工艺。  相似文献   

10.
谷燕  刘贵昌  刘阳 《电镀与涂饰》2005,24(12):19-21
经除油、酸洗、封孔、活化、闪镀后,在Nd-Fe-B永磁体上进行常规化学镀Ni-P合金。测试了不同施镀时间下Ni-P镀层的性能。X射线与扫描电镜图显示该Ni-P镀层光亮、致密,为非晶态结构,其磷含量为12.1%。采用极化曲线测量了Nd-Fe-B永磁体及Ni-P镀层的腐蚀电位、腐蚀电流密度和腐蚀速率,并对其进行了海:水浸泡实验。结果表明,Ni-P镀层的自腐蚀电位较Nd-Fe-B大大提高,且封孔能提高镀层的耐蚀性:该镀层能明显提高Nd-Fe-B永磁体的耐腐蚀能力,且随镀层厚度增加,耐蚀性增加。  相似文献   

11.
化学镀Ni-P合金镀层以其优良的耐蚀性,被广泛用于化工设备和化工管道的防腐。阐述了化学镀Ni-P合金镀层的耐蚀机制,并综述了化学镀Ni-P合金镀层在换热器、冷却器、泵阀等化工设备及化工管道防腐中的应用概况。  相似文献   

12.
研究了电刷镀Ni-P合金镀层的制备工艺,检验服镀层的耐蚀性和硬度等性能。结果表明Ni-P合金镀层具有优良的耐蚀性,并成功地获得了耐磨复合镀层。  相似文献   

13.
化学镀Ni-Sn-P合金镀层耐蚀性的研究(Ⅱ)   总被引:4,自引:0,他引:4  
研究了化学镀Ni-Sn-P合金镀层的耐蚀性、并同高磷Ni-P合金(11.9wt%P)镀层进行了比较。结果表明:Ni-Sn-P合金镀层孔隙率低,在酸性、中性和碱性介质中的耐蚀性优于Ni-P合金镀层。  相似文献   

14.
本文结合电化学腐蚀原理及产品实际使用环境,在镍-磷合金/金双镀层基础上建立了镍-磷合金/铜/镍-磷合金/金的多层组合镀层,分析了多层组合镀层的腐蚀机理,并对其耐蚀性能进行了验证。结果表明,镍-磷合金/铜/镍-磷合金/金的多层组合镀层可满足航空产品耐192 h盐雾腐蚀的使用要求,可有效提高材料的防护性能。  相似文献   

15.
研究了NaF和KIO3对Q235钢表面电沉积Ni-P合金层沉积速率的影响,并通过浸泡实验考察了Ni-P合金镀层在质量分数分别为3.5%的NaCl,10%的NaOH和5%的HCl等三种溶液中的耐蚀性.结果表明:NaF并没有提高镀层的沉积速率,而加入KIO3则提高了镀层的沉积速率.同时,加入NaF或KIO3后均能明显改善Ni-P合金镀层的耐蚀性.  相似文献   

16.
化学镀Ni-P合金工艺的优化   总被引:6,自引:2,他引:4  
用五种化学镀工艺制备了Ni-P合金镀层。用动电位极化曲线法比较镀层的耐均匀腐蚀性能,用溶液浇浸法测定了镀层的耐孔蚀性能,并用X-射线衍射仪和扫描电子显微镜分别研究镀层结构和表面形貌。结果表明:工艺2制备的镀层具有较高的耐均匀腐蚀和耐孔蚀性能,属于非晶和微晶组成的混晶结构。并对该工艺进行了正交试验,得到了最优工艺条件。  相似文献   

17.
The corrosion resistance behavior of Ni-Co-B coated carbon steel, Al 6061 alloy and 304 stainless steel was evaluated in simulated proton exchange membrane fuel cell (PEMFC) environment. The phase structure of the NiCoB based alloy was determined by Rietveld analysis. The PEMFC environment was constituted of 0.5 M H2SO4 at 60 °C and the evaluation techniques employed included potentiodynamic polarization, linear polarization resistance, open circuit potential measurements and electrochemical impedance spectroscopy. The results showed that in all cases the corrosion resistance of the Ni-Co-B coating was higher than that of the uncoated alloys; about two orders of magnitude with respect to carbon steel and an order of magnitude compared to 304 stainless steel. Except for the uncoated 304 type stainless steel, the polarization curves for the coated specimens did not exhibit a passive region but only anodic dissolution. The corrosion potential value, Ecorr, was always nobler for the coated samples than for the uncoated specimens. This was true for the stainless steel in the passive region, but in the active state for the carbon steel and Al 6061 alloy. The corrosion of the underlying alloy occurred due to filtering of the solution through coating defects like microcracks, pinholes, etc. During the filtering process the Ecorr value of the coating decreased slowly until it reached a steady state value, close to the Ecorr value of the underlying alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号