首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
在采用液态阴极法电解CaCl_2-添加剂A盐系制取Pb-Ca合金的实验室试验中,研究了电解质组成、温度、阴极电流密度对电解指标的影响,确定了最佳工艺条件:在电解温度720℃,D_K=0.83 A/cm~2下,电流效率为84.7~90.1%,钙直收率为93.4~99.3%,钙的含量>2%。  相似文献   

2.
在KF-AlF_3-Sc_2O_3熔盐体系中,研究下沉阴极法制备Al-Sc合金的工艺技术。采用XRD、SEM分析了所制备Al-Sc合金的物相组成、微观组织以及微区成分含量;研究了电解温度、阴极电流密度、熔盐组成对熔盐电解电流效率的影响。实验结果表明,Al-Sc合金中含有Al相、Sc相以及Al_3Sc相;Al-Sc合金夹杂了少量熔盐,Al_3Sc相在合金中的分布和形态呈不规则状。电解过程的最佳工艺条件为:在KF-AlF_3-Sc_2O_3熔盐体系中,液态铝为下沉阴极,Sc_2O_3为电解质,熔盐体系KF/AlF_3摩尔比1.3,电解温度800℃,电解时间25min,电流密度1.592A/cm~2;此条件下所制备Al-Sc合金中Sc含量最高可达6.710%,平均电流效率达到57.28%。  相似文献   

3.
采用熔盐电解法一步合金化直接制取铝锶合金,同时采用了复合电极,阳极析出的氯气得以顺利逸出,而且阴阳极引线得到很好的保护,从而使电解过程能够顺利进行。电解条件:750℃、阴极电流密度1.0A/cm~2、电解质配比(SrCl_2 70%、KCl 25%、SrF25%)、极距4.0cm,阴极产品Al-Sr合金含Sr10%、Ca、Fe均小于0.1%,电流效率82.6%,直流电耗998kWh/t,成本25 022元/t。  相似文献   

4.
研究了各种因素对真空熔盐电解法制备海绵钛电流效率的影响.研究结果表明:(1)在CaCl2熔盐体系中进行电解,当压力<10 Pa、电解温度850℃、电极间距5 cm、阴极电流密度1.05 A/cm2、阳极电流密度0.8 A/cm2时,可有效避免海绵钛的二次氧化,降低槽电压,减少电流损失,从而提高电流效率;(2)采用混合熔盐体系CaCl2+A,可较大幅度降低电解温度和熔盐电阻,从而提高电流效率;(3)可通过选择适宜的真空度、熔盐体系、电极间距、电流密度,保持规整的电解槽内型,使用纯度较高的熔盐和TiO2原料等提高电流效率.  相似文献   

5.
科技简讯     
熔盐电解法制取金属镨上海跃龙化工厂用熔盐电解法制取了金属镨,其工艺条件是:在800A单体石墨铁壳电解槽内,以石墨坩埚本身为阳极,钼棒为阴极,用KCl-PrCl_3组成电解质,700CC氧化铝瓷坩埚作金属接受器,在温度970±10℃,D_k≈6.5A/cm~2,D_e≈1.1A/cm~2的电  相似文献   

6.
邱小英  蓝桥发  邱小兵  黄金 《稀土》2024,(2):105-112
以Y2O3为原料、YF3-LiF为熔盐,研究自耗阴极熔盐电解法制备Y-Ni合金,分析电解电压、电解电流对合金成分、电解温度、电解效率和金属收率的影响。在61.5%YF3-38.5%LiF(原子分数)的熔盐体系下,电解电压、电解电流对电解温度影响显著,电解温度过高,稀土金属在熔体中溶解加快,稀土金属氧化、二次反应加剧,合金中钇成分含量、电解效率以及钇金属收率随着电解温度的增加逐渐降低,实验获得的最佳电解条件为:电解电压为7.2 V±0.2 V,电解电流为555 A±5 A,电解温度为1080℃±20℃。通过对Y-Ni合金的表征分析,制备的Y-Ni合金成分较为均匀,无明显偏析现象,合金中Y∶Ni=1∶1(质量比),主要由NiY相和Ni2Y相组成,其中YNi相占比为42.11%,YNi2相占比为57.89%。  相似文献   

7.
采用铝空心管为阴极、NaCl 与 KCl 为电解质进行熔盐电解可以制取 Al-Li 合金。电解时,最佳工作阴极电流密度为0.005~1A/dm~2。用该方法可以制得含 Li≥10wt%或(K Na)≤5ppm,Cu≤10ppm 的中间合金。例如:电解槽有石墨阳极和外径80mm、内径50mm 的中空阴极,它是纯度99.7%Al(含5ppm  相似文献   

8.
本文在40A级电解槽中研究了用合金化阴极方法在氯化物熔盐中电解制取Nd-Zn合金及真空蒸馏Nd-Zn合金制备金属钕的工艺;并用电化学方法研究了钕在液态锌或固态钼阴极上还原的阴极过程,得出制取Nd-Zn合金的最佳工艺条件。电解过程中金属钕的电流效率为92~99%,直收率为86~95%,Nd-Zn合金中含钕达10~50wt%。用真空蒸馏Nd-Zn合金制得的金属钕纯度为96~98%。  相似文献   

9.
以Y2O3为电解原料, 以金属镍棒为自耗阴极、石墨板为阳极, 在常规的石墨电解槽中采用氟化物体系熔盐电解法制备了YNi合金。研究了电解时间、电解温度、电解质组成、阴极电流密度等主要技术参数对电解过程的影响, 并对所制备的钇镍合金进行了表征。结果表明, 熔盐电解制备钇镍合金的较优工艺条件为: 电解温度1 000 ℃, 电解质YF3与LiF质量比为85:15, 阴极电流密度为10.0 A/cm2, 正常电解时电流效率约为72.8%;制备的钇镍合金中Y含量为52.6%, 由YNi2相和YNi相组成, 杂质含量低, 满足稀土储氢合金对原料的使用要求。本文的研究为钇镍合金的规模化生产提供了切实可行的途径。   相似文献   

10.
本文用接触阴极在 SrCl_2-KCl 熔盐中进行了金属锶的电解。在电解试验的基础上,确定了在 SrCl_2-KCl 盐系中,用接触阴极制取锶的最佳工艺条件和锶电解的技术经济指标。从阴极上取下被熔盐结壳覆盖的锶棒,经在密闭充氩的容器中重熔铸锭,其纯度接近99%Sr。  相似文献   

11.
本文在60A 级电解槽中研究了用液态锌阴极方法在氯化物熔盐中电解YCl_3-KCl 制取 Y-Zn 合金,进而真空蒸馏 Y-Zn 合金制备金属钇的工艺,获得制取 Y-Zn 合金的最佳工艺条件。在电解温度750—850℃、Dk 为3A/cm~2时,金属钇的电流效率为90%,钇直收率为85%—90%,Y-Zn合金中含钇达12wt%—26wt%。真空蒸馏 Y-Zn 合金制得金属钇的纯度为98%—99%。  相似文献   

12.
以无水氯化钙作为熔盐,采用熔盐电解法对TiO2阴极片进行脱氧,通过X射线衍射(XRD)和扫描电镜(SEM)对TiO2电解产物的相组成、电极表面形貌与元素组成进行观察与分析,研究熔盐的预电解脱水与熔盐电解时间对TiO2电解脱氧行为的影响。结果表明,熔盐未经预电解时,TiO2阴极片不发生脱氧反应,电解产物只有CaTiO3相;熔盐经预电解脱水后,TiO2电解产物部分或全部为低价钛氧化物,预电解时间达到15h即可有效去除熔盐中的水分,从而获得较佳的熔盐电解脱氧效果,电解产物为氧含量较低的Ti2O。TiO2电解脱氧是分步进行的,随电解进行,先后出现Ti2O3、TiO、Ti2O,由于钛的化合价逐渐降低,所需分解压升高,导致脱氧效率逐渐降低。TiO2阴极的脱氧反应是由表面到心部进行,电解后的阴极片明显分层,表层为氧含量较低的Ti2O,中间层为CaTiO3和钛的低价氧化物,心部为CaTiO3。  相似文献   

13.
研究了不同配比的NaCl-K2ZrF6熔盐体系的熔点,K2ZrF6:NaCl=3:7的熔点较低为721℃.在此基础上,研究了熔盐配比、阴极电流密度、电解温度等因素对NaCl-K2ZrF6熔盐体系电解精炼电流效率的影响,结果表明阴极电流密度、电解温度均与电流效率成反比.采用XRD及元素含量分析等方法研究了电解精炼产品质量.较佳的工艺条件为K2ZrF6:NaCl为3:7(%,质量分数),温度800℃,阴极电流密度1 A·cm-2,在此条件下,电流效率可达84%以上.阴极锆为合格的工业级锫产品,产品中Fe,Ni,Cr,Mn等杂质分别由2700×10-6,540×10-6,350×10-6,400×10-6降低到30×10-6,10×10-6,18 ×10-6,100×10-6以下,产品纯度达到99%以上.  相似文献   

14.
研究了各种因素对真空熔盐电解法制备海绵钛电流效率的影响。研究结果表明:(1)在CaCl2熔盐体系中进行电解,当压力〈10Pa、电解温度850℃、电极间距5cm、阴极电流密度1.05A/cm^2、阳极电流密度0.8A/cm^2时,可有效避免海绵钛的二次氧化,降低槽电压,减少电流损失,从而提高电流效率;(2)采用混合熔盐体系CaCl2+A,可较大幅度降低电解温度和熔盐电阻,从而提高电流效率;(3)可通过选择适宜的真空度、熔盐体系、电极间距、电流密度,保持规整的电解槽内型,使用纯度较高的熔盐和TiO2原料等提高电流效率。  相似文献   

15.
熔盐电解法制备高纯钛粉   总被引:2,自引:0,他引:2  
以海绵钛作可溶阳极,纯钛板为阴极,NaCl-KCl-TiClx混合熔盐作电解质,在电解温度为900~980℃、阴极电流密度为0.1~0.6A/cm2、初始可溶钛浓度2%~8%的条件下,电解24h制备高纯钛粉,研究初始可溶钛浓度对钛粉中杂质元素含量的影响,以及电流密度和初始可溶钛浓度对电流效率及钛粉形貌的影响。结果表明,钛粉杂质含量完全达到高纯钛粉的标准,提高初始可溶钛浓度可降低杂质含量;在较高的阴极电流密度以及高的初始可溶钛浓度下电解效率较高;在阴极电流密度较高时钛粉为细小的树枝状晶体,而在阴极电流密度较低时得到较粗大均匀的结晶粉体。  相似文献   

16.
熔盐电解制备碳化钛粉末的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在CaCl2熔盐中,以TiO2和炭黑的混合物为阴极,在850℃电解制备得到了碳化钛粉末。研究不同电解时间后所得阴极产物的物相结构,探讨了熔盐电解法制备碳化钛的阴极反应过程及机理。结果表明,氧离子在固相中的传质是阴极反应速度的限制性环节。熔盐电解法制备碳化钛的工艺简单、反应温度低且对环境友好。  相似文献   

17.
电解法制备高纯钛的研究   总被引:1,自引:0,他引:1  
以海绵钛为可溶阳极,纯钛板为阴极,NaCl-KCl-TiClx混合熔盐作电解质,在900~980℃温度范围内进行熔盐电解,研究了加料温度、电解温度、可溶钛浓度以及阴极电流密度等因素对阴极产品杂质含量的影响。结果表明,在较高温度下加料并电解可获得杂质含量低的产品,通过控制可溶钛浓度和阴极电流密度可获得不同形貌和纯度的阴极产品。  相似文献   

18.
熔盐电解法制备硼粉的研究   总被引:1,自引:0,他引:1  
研究了在KCl-KBF4体系和KCl-KBF4-B2O3体系中熔盐电解法制备硼粉的工艺条件。对KCl-KBF4体系采用正交试验法研究了熔盐配比、温度、阴极电流密度和电解时间对硼粉纯度及电流效率的影响,得到的最佳实验条件为:KCl∶KBF4为5∶1,温度750℃,阴极电流密度1.5A.cm-2,电解时间3h。该条件下能得到纯度95%以上的球形非晶态硼粉,电流效率可达到80%以上。KCl-KBF4-B2O3体系熔盐电解得到超细球形硼粉,但电流效率低,产品难以收集,杂质含量较高。  相似文献   

19.
一、设备 1.恒电流电解装置系统 2.72型分光光度计二、电解提取分离 2.1电解采用电解液为1%LaC1+5%三乙醇胺+5%乙二醇乙醇液,电解槽为250ml高型烧杯,阴极为圆筒状不锈钢,试样为阳极。将电解液250ml放入烧杯中移入低温冰箱,降温至-20℃即接通电源电解,控制温度在-5℃左右电解完毕。电流密度为0.025A/cm~2,电解时间约30min。在不断电的情况下取出试样,于250ml烧杯中将试样上的阳极残渣用水擦洗  相似文献   

20.
NaCl—Na2WO4—WO3系熔盐电解法制备超细钨粉的研究   总被引:6,自引:0,他引:6  
在NaCl-Na2WO4-WO3熔盐体系中,对熔盐电解法电解氧化钨制取高纯超细钨粉进行了实验研究。在该电解质体系中,在电解温度为780℃、阴极电流密度为320mA/cm^2的条件下,可以制得平均粒度为0.961μm的超细钨粉。在低电流密度时,阴极的电解反应为W^6 在阴极放电,三氧化钨直接还原得到钨粉;而在高电流密度时,阴极电解反应分为两步,首先是Na^ 在阴极放电,生成金属钠,然后是金属钠还原三氧化钨得到钨粉。另外,还对电解槽温度、阴极电流密度和电解质中WO3的浓度对电流效率的影响进行了测定与研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号