首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
谷峪  于宁 《河北化工》2013,(4):23-25
以改性后得到的Fe3O4-KH-570粒子为核,运用分散聚合法合成羧基磁性高分子微球,采用紫外光谱仪、红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段进行表征。结果表明,该羧基磁性高分子微球粒子平均粒径为350nm,磁响应性良好,具有明显的核壳结构。  相似文献   

2.
本文采用反相悬浮法,通过聚乙二醇的缩醛化反应,制备了具有灵敏磁响应性、表面富含羟基的微米级的磁性高分子微球。主要探讨了反应时间、聚乙烯醇浓度、搅拌速度、戊二醛(GA)用量及磁流体用量的变化对磁性高分子微球制备及性质的影响,用红外(FTIR)、激光粒径分析仪、扫描电子显微镜(SEM)、振动样品磁强计(VSM)进行表征。结果表明,所制备磁球表面羟基含量高,分散性好,磁含量高,具有超顺磁性。  相似文献   

3.
刘天孚  刘琦  王君 《化学工程师》2011,(12):52-53,59
采用溶液聚合法制备具有良好悬浮性和磁响应性的硅烷化胺基磁珠,对胺基磁性微球的形貌、结构、悬浮稳定性和磁响应性进行表征.研究结果显示,硅烷化胺基磁性微球的平均粒径为15nm,粒径分布比较均匀,近似为球形的壳核结构,核为磁性基质,壳为3-胺基丙基三乙氧基硅烷;将硅烷化胺基磁珠用于悬浮稳定性研究表明,磁微球具有较好的悬浮稳定...  相似文献   

4.
磁性多孔聚苯乙烯微球的制备   总被引:2,自引:0,他引:2  
范琳 《广东化工》2005,32(7):19-21
在磁流体存在的情况下,采用改进了的乳液聚合法合成了具有磁核的微米级高分子聚苯乙烯微球。以该微球为种子,采用分散聚合法,以乙二醇/水为分散介质、聚乙二醇为分散剂、甲苯为制孔剂,进行苯乙烯-丙烯酸-二乙烯苯的三元共聚物的合成,最终合成出粒径分布均匀、磁响应性强的磁性多孔聚苯乙烯微球。  相似文献   

5.
《应用化工》2022,(11):2364-2368
采用悬浮聚合法,以甲基丙烯酸甲酯(MMA)和甲基丙烯酸缩水甘油酯(GMA)为反应单体,二乙烯基苯(DVB)为交联剂,油酸改性的四氧化三铁为磁源,在密闭的反应釜内合成了磁性树脂微球MCER0。磁性微球通过碱水解,制备了弱酸性的磁性离子交换树脂MCER1,进一步经过酸水解,制备了磁性离子交换树脂MCER2。采用极谱仪对Cd2+的吸附行为进行了分析。结果表明,MCER1和MCER2都具有多孔结构和较大的比表面积,具有良好的磁响应性和热力学稳定性,其磁含量分别为22. 45%和8. 18%。两种磁性离子交换树脂在处理低Cd2+浓度废水时去除效果显著,且MCER2的吸附效果优于MCER1。  相似文献   

6.
磁性高分子复合微球是粒径在纳米级至微米级,通过适当方法使有机高分子与无机磁性物质复合起来形成的具有一定磁性及特殊结构的微球。磁性高分子复合微球兼具高分子材料的功能特性和无机纳米粒子的磁响应性,可以在外加磁场作用下快速方便的分离。因此,磁性高分子微球作为一种新型的复合功能材料,在生物化学、靶向药物、化学工业、分离工程、水处理等诸多领域显示出了广泛的应用前景。本论文主要综述了磁性高分子复合微球的制备方法和应用领域,并对前景和存在的问题进行了分析和展望。  相似文献   

7.
采用悬浮聚合法,以甲基丙烯酸甲酯(MMA)和甲基丙烯酸缩水甘油酯(GMA)为反应单体,二乙烯基苯(DVB)为交联剂,油酸改性的四氧化三铁为磁源,在密闭的反应釜内合成了磁性树脂微球MCER0。磁性微球通过碱水解,制备了弱酸性的磁性离子交换树脂MCER1,进一步经过酸水解,制备了磁性离子交换树脂MCER2。采用极谱仪对Cd2+的吸附行为进行了分析。结果表明,MCER1和MCER2都具有多孔结构和较大的比表面积,具有良好的磁响应性和热力学稳定性,其磁含量分别为22. 45%和8. 18%。两种磁性离子交换树脂在处理低Cd2+浓度废水时去除效果显著,且MCER2的吸附效果优于MCER1。  相似文献   

8.
李瑞歌  李鼎  朱春山 《辽宁化工》2011,40(6):543-546
以油酸低温水洗改性制备的磁性四氧化三铁纳米粒子为核,以β-环糊精(β-CD)、丁二酸酐(SA)为主要原料,采用反相乳液聚合法制备了β-环糊精/丁二酸酐共聚高分子磁性微球。分析和探讨了丁二酸酐接枝的磁性β-CD微球结构、不同pH值下的溶胀性能及磁响应性能,并以水杨酸为模型药物进行了微球载药的体外释药性能研究。结果表明:该微球具有pH值敏感性和磁响应性,可以用作药物缓控释系统的载体材料。  相似文献   

9.
《化学工程》2015,(9):40-44
在油酸包裹的疏水性Fe3O4磁流体存在下,以甲基丙烯酸甲酯(MMA)为聚合单体、二乙烯苯(DVB)为交联剂、过氧化苯甲酰(BPO)为引发剂、聚乙烯醇(PVA)为分散剂,采用振动分散聚合法制备了单分散的聚甲基丙烯酸甲酯(PMMA)磁性高分子微球。振动分散聚合法分为2步:首先,通过在喷嘴处施加适当振动将油相射流分散成单分散液滴;单分散油相液滴上浮进入反应器后,在反应器中发生散式流态化并聚合生成单分散聚甲基丙烯酸甲酯(PMMA)磁性微球。采用扫描电子显微镜(SEM)和激光粒度分析仪检测了磁性微球的形貌和粒径分布,振动样品磁强计(VSM)检测了磁性微球的磁性能、红外光谱分析仪(FT-IR),研究了在聚甲基丙烯酸甲酯中磁性Fe3O4纳米颗粒的结构。结果表明:PMMA磁性微球的比饱和磁化强度为24.40 A·m2/kg,并表现出超顺磁性,微球的平均直径为350μm,粒径分布达到单分散的要求。  相似文献   

10.
羧基磁性高分子微球的制备和表征   总被引:13,自引:0,他引:13  
用改进的悬浮聚合法制备了表面含有羧基功能团的聚苯乙烯磁性微球。考察了磁微球的形态与结构 ,测定了磁微球的粒径与磁响应性 ,主要研究了单体 /水、丙烯酸 /单体、反应温度和反应时间对磁性微球形成的影响 ,并对磁性微球的生物吸附活性进行了表征。优化得到了制备具有良好生物吸附活性的羧基磁性微球的最佳实验条件  相似文献   

11.
磁性聚苯乙烯微球研究:丙烯醛和苯乙烯的共聚与表征   总被引:2,自引:0,他引:2  
用聚乙二醇修饰磁性氧化铁粒子 ,作为聚合种子投入乙醇 /水分散介质中 ,进行丙烯醛和苯乙烯的共聚 ,得到了微米级的磁性复合微球。考察了磁性种子 ( Fe3 O4-PEG)、丙烯醛、苯乙烯、引发剂和分散介质对共聚体系和复合微球形成的影响。微球以 Fe3 O4晶粒为内核 ,苯乙烯与丙烯醛的共聚物为外壳 ,且表面分布一定数量的醛基。随共聚条件改变 ,微球粒径、表面醛基和磁响应性亦发生变化  相似文献   

12.
通过溶剂热法制备出高磁性的聚合物微球MnFe_2O_4,经正硅酸乙酯(TEOS)和3-氨基丙基三乙氧基硅烷(APTS)对微球表面进行改性修饰,制备出新型复合材料MnFe_2O_4@SiO_2-NH_2,并将其用于固定青霉素G酰化酶。在Si/Fe比为7 mmol/g、n(TEOS)∶n(APTS)=1∶1时,固定化酶PGA/MnFe_2O_4@SiO_2-NH_2在37℃下水解青霉素G钾合成6-氨基青霉烷酸,表观酶活为1 660 IU/g、载酶量为107.1 mg/g、比酶活为15.5 IU/mg、活性回收率为46.9%。经过6次重复使用,保留初始酶活的81.3%,在使用中固定化酶在磁场的作用下能够快速沉降与产物分离。  相似文献   

13.
以自制近单分散、平均粒径约为250 nm的SiO2亚微球为核心,采用液相沉积法得到β-FeOOH/SiO2微球,再通过溶胶-凝胶法以β-FeOOH/SiO2微球为内核,十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,经水解缩聚反应,焙烧后得到近单分散介孔SiO2/Fe3O4/SiO2微球,以复合微球为载体,对漆酶进行固定。结果表明,近单分散介孔SiO2/Fe3O4/SiO2复合微球的介孔层厚约40 nm,具有较大的饱和磁化强度(14.715 emu/g),较小的剩余矫顽力(约为109Oe),其比表面积为391.067 m2/g,孔容为0.53 cm3/g,孔径分别在5.43 nm和20~80 nm,呈现双孔径分布。复合微球吸附漆酶后,介孔材料的比表面积与孔容分别减小为103 m2/g和0.37 cm3/g,复合微球对漆酶的吸附量为202.6 mg/g。  相似文献   

14.
为开发一种高效可循环利用的磁性生物质基催化剂,以微晶纤维素和纳米Fe3O4为原料,采用包埋法制得Fe3O4/纤维素(Fe3O4/MCC)溶液,将海泡石(SEP)掺入至Fe3O4/MCC中,制得磁性纤维素/海泡石复合微球(Fe3O4/MCC/SEP)。通过SEM、FTIR、VSM等对磁性微球的形貌、化学结构及磁性能进行了表征,探讨了微球作为芬顿催化剂对亚甲基蓝(MB)染料的降解效果及机理。结果表明,Fe3O4/MCC/SEP微球呈现出优异的中空多孔结构和超顺磁性。当MB浓度为10 mg/L、pH为3、Fe3O4/MCC/SEP的投入量为0.02 g,H2O2用量为5 mL时,反应240 min对MB的Fenton催化降解率高达99%。此外,经过5次循环利用后,对MB的降解率仍达83%。  相似文献   

15.
Core–shell composite magnetic polymer microspheres, containing a magnetic core and a polymer shell, were synthesized by dispersion copolymerization of styrene (St) and 2-hydroxyethyl methacrylate (HEMA) in the presence of magnetic oxide (Fe3O4) powder. The Fe3O4 powder was ultrasonically disperesed in poly(ethylene glycol) (PEG) and the affinity between the obtained superfine powder and the monomer and initator was improved. It shows that the dispersion medium and stabilizer system have a great effect on the diameter and dispersion parameter of microspheres. In the condition of controlling polymerization, the magnetic polymer microspheres containing surface ? OH groups, having 50–500 μm diameter and with better magnetic induction, were synthesized. The proteinase of Balillus sublitis was immobilized on magnetic polymer microspheres with an average diameter of 50–60 μm by covalent coupling. The magnetic immobilized proteinase shows an enzyme activity of 1000 U/g, the enzyme yields are usually 20–30 mg/g of carriers, and the activity retention is about 40%. The stability of the immobilized enzyme was obviously improved. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
采用化学共沉淀法制备了油酸包覆的Fe3O4磁性纳米粒子,以此为核·采用分散聚合法制备了表面带有环氧基团的Fe3O4/聚甲基丙烯酸缩水甘油酯(PGMA)磁性复合微球,探讨了聚合工艺、聚合条件对甲基丙烯酸缩水甘油酯(GMA)利用效率的影响规律,并用傅立叶变换红外光谱仪(FTIR)、热重分析仪(TGA)、振动样品磁强计(VSM)和扫描电镜(SEM)等对磁性复合微球的结构、磁性能和包覆量进行了表征.采用盐酸一丙酮法测定了磁性复合微球表面环氧基的含量。结果表明,在优化的条件下。GMA利用效率高达61.26%。磁性复合微球具有良好的单分散性·粒径为1~2μm.具有超顺磁性.比饱和磁强度为17.12emu·g^-1。环氧基含量达3.5mmol·g^-1。  相似文献   

17.
以甲基丙烯酸和丙烯酰胺为功能单体,通过悬浮聚合法制备了氨基和羧基双功能化的磁性复合微球(Fe3 O4@SiO2-NH2/COOH),并探讨了其对水溶液中Cd(Ⅱ)和Pb(Ⅱ)的吸附性能.X-射线衍射(XRD)分析表明,制备的磁性吸附剂内核为Fe3 O4.红外光谱(FT-IR)和扫描电镜(SEM)测试表明,氨基和羧基对Fe3 O4@SiO2表面改性成功.吸附试验显示,Fe3O4@SiO2-NH2/COOH吸附Cd(Ⅱ)和Pb(Ⅱ)的最优pH值分别为5.0和5.5,吸附过程均符合动力学准二级模型和Langmuir吸附等温模型,吸附剂对Cd(Ⅱ)和Pb(Ⅱ)最大吸附量分别为207.807 mg/g和168.995 mg/g.实际饮用水样中Cd(Ⅱ)和Pb(Ⅱ)的吸附表明,去除率分别可达97.74%和91.44%.该磁性吸附剂对两种重金属离子吸附量大、去除率高,具有良好的实际应用潜力.  相似文献   

18.
本文以磁性氧化铁胶体粒子为种子,运用分散聚合法,制备出具有磁响应性Fe_3O_4/P(SI-AA)核—壳复合微球。考察了复合微球的形态及结构,测定了复合徽球的粒径和磁响应性,研究了分散介质,引发剂,聚合单体和种子粒子等因素对复合徽球形成的影响。适当调整有关反应条件,采用分散聚合法,可以使复合微球粒径达到23.0μm,磁性氧化铁含量达到9.0mg/s。  相似文献   

19.
以(NH4)2Fe(SO4)2.6H2O、NH4Fe(SO4)2.12H2O和壳聚糖为原料,经羟丙基化、氨基化,采用一步包埋法制备了一种新型的多氨基化磁性壳聚糖微球。并通过正交实验确定了改性磁性微球的最佳制备条件,即搅拌速度1200 r/min,壳聚糖用量3.0g,环氧氯丙烷用量5.0mL,乙二胺用量2.5mL。用荧光显微镜对其结构及形貌进行了观察。结果表明,Fe3O4磁性粒子已包埋了一层氨基化壳聚糖。改性磁性微球氨基含量为3.60mmol/g;呈较规则的球形,平均粒径为211.6nm。讨论在最佳条件下制备的壳聚糖微球对污水中Cu2+和Pb2+的吸附能力。  相似文献   

20.
采用静电喷雾法制备了聚醚砜(PES)多孔微球,通过加入亲水性聚合物聚乙烯醇(PEG)和聚乙二醇(PVA)来调控PES多孔微球的孔隙率,利用扫描电子显微镜和热失重法分析仪表征了PES多孔微球的形貌和孔隙率。结果表明,加入亲水性聚合物PEG和PVA均能显著提高PES多孔微球的孔隙率,且随着其添加量的增多,孔隙率呈先增大后减小的趋势;PVA对PES多孔微球孔隙率的调控效果优于PEG,当PVA添加量为3%(质量分数,下同)时,PES多孔微球孔隙率达到最高值91.35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号