首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《应用化工》2022,(9):2440-2443
采用Fenton氧化法对橡胶硫化促进剂生产废水进行预处理,考察了酸析法以及H_2O_2投加量、Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量为2.8 g/L,反应时间为40 min。此时COD的去除率达82.91%。将酸析与Fenton氧化法联合后COD的去除率可达到85.78%,效果良好,为后续蒸发结晶分离氯化钠、硫酸钠奠定了基础。  相似文献   

2.
利用微电解-Fenton组合工艺对油田压裂废水展开预处理研究,以COD去除率为考察指标,单独工艺正交试验结果表明:微电解的最优反应条件为Fe/C摩尔比2∶3、铁碳投加量50 g/L、反应时间60 min、pH值3;Fenton反应的最优条件为p H值3、反应时间90 min、H_2O_2加量12 m L/L、H_2O_2/Fe~(2+)摩尔比30。在最佳条件下,微电解和Fenton反应的COD去除率分别可达56.87%和45.61%,废水COD值由3 715 mg/L降至867.9 mg/L,总去除率达到76.54%。出水水质满足油田现场循环回用的标准。  相似文献   

3.
殷旭东 《当代化工》2016,(4):673-676
采用Fenton预处理高浓度焦化废水,以COD和挥发酚为评价指标,通过正交和单因素实验研究了废水初始pH值、H_2O_2量、[Fe~(2+)]/[H_2O_2]和反应时间对处理效果的影响,同时对反应过程的动力学进行了探讨。结果表明:同时降解COD和挥发酚的最佳控制条件是pH值为3、H_2O_2投加量为170 m L/L、Fe~(2+)/H_2O_2摩尔比为1:80、反应时间为20 min,此时COD和挥发酚的去除率分别达到80%和95%以上;COD的降解反应符合一级动力学方程规律,相关系数R~2=0.991 5,反应速率常数为0.446 9 min~(-1)。  相似文献   

4.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

5.
结合杭州某化工厂的现有工艺,针对该化工厂污水处理出水COD高于GB 21904-2008《化学合成类制药工业水污染物排放标准》,采用Fenton氧化法对其二沉池出水进行深度处理。通过改变原水pH值、H_2O_2/Fe~(2+)质量比投加量、反应时间等因素,来讨论最佳运行参数。试验结果表明,Fenton试剂对化工废水的处理中,在污水pH为5.0、H_2O_2(质量分数为30%)投加量为16 mmol/L、H_2O_2/Fe~(2+)质量比为1︰2.8、反应时间为60 min时的工艺条件下,COD的去除效果最佳。  相似文献   

6.
钟晨  邱培培 《煤化工》2010,38(1):60-62
苏州某炼钢集团公司采用除油气浮-A/O-BAF工艺处理焦化废水,当进水COD质量浓度约7 000mg/L时,BAF出水COD质量浓度可达150mg/L左右。采用Fenton试剂进一步对BAF出水进行深度处理,通过试验得到了满足COD≤70mg/L回用要求的最优工艺条件:初始pH值=4,[H_2O_2]/[Fe~(2+)]=4:1,H_2O_2投加量为132mg/L,反应时间1h。  相似文献   

7.
《广东化工》2021,48(1)
采用聚合硫酸铁(PFS)-Fenton氧化法对高浓度丙烯酸酯类乳液废水进行预处理。通过混凝实验研究了不同的混凝剂(PAC、FeCl_3、PFS)及助凝剂PAM投量、pH、絮凝时间对废水COD去除率的影响;Fenton氧化实验探讨了H_2O_2和FeSO_4投加量、初始反应pH值、反应时间等因素对混凝处理水样处理效果的影响。结果表明,混凝处理最佳混凝剂为PFS,PFS用量90 mL/L,PAM投药量为5 mL/L,絮凝时间为80 min,pH为6,最大COD去除率达61.4%;Fenton氧化实验最适宜条件为:H_2O_2(浓度30%)投加量28.6 mL/L,FeSO_4(浓度15%)投加量500 mL/L,初始反应pH值为3,反应时间为60 min。处理水COD降低到5195 mg/L,COD去除率达84.4%,可以满足接下来的生物系统对进水有机污染物浓度的要求,对于解决高浓度丙烯酸酯类乳液废水预处理提供了一种参考方案。  相似文献   

8.
采用混凝-Fenton法处理盘锦油田含油废水,分析PAC用量、PAM用量、pH值、H_2O_2的投加量、FeSO_4·7H2O的投加量、反应温度和反应时间等各因素对COD_(Cr)去除效果的影响,并确定最佳的处理条件。结果表明,混凝试验中PAC的投加量为200 mg/L和PAM的投加量为0.6 mg/L时效果最好;Fenton反应的最佳条件为:pH值为4,H_2O_2投加量为37.8 mmol/L,FeSO_4·7H_2O投加量为3.78 mmol/L,反应温度为75℃,时间为30 min,此时Fenton反应进行最彻底,含油废水COD_(Cr)去除率最高。  相似文献   

9.
采用两段超声波结合H_2O_2氧化处理丙烯酸废水。考察了超声波频率、功率、H_2O_2投加量、废水初始pH等对处理效果的影响。一段超声波条件:频率=120 kHz,功率=400 W,H_2O_3投加量为0.7 mL/L,废水pH值为3~5,反应时间为50 min。二段超声波条件:频率=68 kHz,功率=250 W,H_2O_2投加量为0.8 mL/L,调节废水pH值为3~5,反应时间为1 h。经氧化处理丙烯酸废水BOD_5/COD比值(B/C值)由0.28提高至0.47,经生物法降解,实现出水COD60 mg/L。  相似文献   

10.
以Fenton试剂氧化结合电解法去除湿熄焦废水COD和NH_3-N。结果表明:Fenton试剂氧化前处理中,稀释倍数为2,调节pH至3,n(H_2O_2)/n(Fe~(2+))=15,Fe~(2+)绝对投加量为0.38 mol/L,反应时间60 min时,COD去除率达76.5%,COD为128.3 mg/L;电解法再处理时,控制Cl-添加量7000 mg/L,电流密度12 m A/cm~2条件下电解120 min,调节pH至8,静置30 min,COD和NH_3-N去除率分别达到95.2%和93.7%,浓度降为26.2 mg/L和19.3 mg/L,能达到循环回用于湿熄焦要求,说明Fenton试剂氧化-电解法可对熄焦废水COD和NH_3-N进行有效去除。  相似文献   

11.
Fenton氧化法是处理难生物降解的苯胺废水的有效方法。本文以苯胺去除率和COD去除率为指标,采用控制变量法探究Fe~(2+)投加量、H_2O_2投加量以及pH值等因素对Fenton试剂处理模拟苯胺废水的处理效果,分析Fenton试剂降解苯胺的机理。研究结果表明,对于浓度为10μg/mL的模拟苯胺废水,当0.5mol/L的FeSO_4溶液投加量为2.5mL、30%H_2O_2溶液投加量为1.5mL(Fe~(2+)与H_2O_2物质的量比约为10∶1),溶液pH值为3.0左右时,苯胺去除率可达到88%;在投加溶液稀释相同的倍数情况下,相应COD去除率可达到68%,为后续的生化处理提供有效条件。  相似文献   

12.
采用混凝-UV/Fenton氧化联合工艺对废切削液进行处理。通过对各影响因素进行考察,确定了混凝最佳条件:pH为7,PAC投加量2 000 mg/L,助凝剂CPAM投加量10 mg/L;UV/Fenton氧化最佳条件:H_2O_2投加量0.9 Qth,n(H_2O_2)∶n(Fe~(2+))=50∶1,反应时间为120 min。在最佳工艺条件下,废切削液经混凝-UV/Fenton处理后,COD由21 400mg/L降为432 mg/L,油质量浓度由4 940 mg/L降为2 mg/L,BOD_5/COD由原水的0.069增至0.784,出水可直接进行生物处理。实验证明,混凝-UV/Fenton处理废切削液可行。  相似文献   

13.
采用微波辅助强化Fenton体系处理ABS树脂生产过程中的混合废水。文章探讨了微波照射时间、微波照射功率、pH值、H_2O_2投加量以及Fe~(2+)/H_2O_2摩尔比等因素对COD和浊度去除率的影响,并将微波辅助Fenton法与传统Fenton法进行比较。结果表明:在室温条件下,处理100 mL ABS废水,微波辅助Fenton体系最佳条件为微波照射时间150 s、微波功率600 W、pH值为3、H_2O_2投加量1.5 mL、Fe~(2+)/H_2O_2摩尔比1∶8,微波-Fenton法所需的时间仅为传统Fenton法的1/15,浊度去除率可达98%,COD去除率可达65%。  相似文献   

14.
研究非均相UV/Fenton催化剂体系对活性艳红X-3B染料废水的去除效果,确定了最佳反应条件,为该工艺处理染料废水提供理论依据及数据。利用非均相UV/Fe-R/H_2O_2体系对活性艳红X-3B模拟染料废水进行处理,研究H_2O_2投加量、pH、催化剂投加量及反应时间对活性艳红X-3B染料废水处理效果的影响。在H_2O_2投加量为Qth、pH为4、催化剂投加量为1.0 g/L、反应60 min的条件下,处理质量浓度为100 mg/L的活性艳红X-3B染料废水的效果最好,活性艳红X-3B和COD的去除率分别达到92.45%和72.33%。该体系克服了均相Fenton体系应用范围窄的缺点,使得非均相Fenton体系在酸性、中性及弱碱性条件下也能具有不错的去除效果。  相似文献   

15.
以柠檬酸单独络合铜离子、柠檬酸单独络合镍离子、柠檬酸综合络合铜镍离子这3种模拟电镀废水为对象,采用芬顿(Fenton)、高锰酸钾(KMnO_4)以及过硫酸钠(Na_2S_2O_8)三种氧化法进行氧化破络,并结合加碱沉淀工艺对铜镍离子进行去除。结果表明,Fenton氧化法最佳反应参数:初始pH值为3.0,Fe~(2+):H_2O_2摩尔比为1:10,30%H_2O_2投加量为0.05 mL/L,反应时间为30 min。KMnO_4氧化法最佳反应参数:初始pH值为3.0~4.0,KMnO_4投加量为37.5 mg/L,反应时间为80 min。Na_2S_2O_8氧化法最佳反应参数:温度为20℃,初始pH值为2~7,S_2O_8~(2-):Fe~(2+)摩尔比为1:1,Na_2S_2O_8投加量为0.1 g/L,反应时间为90 min。对比三种氧化法,可以得出,对pH的适应性:Na_2S_2O_8氧化法KMnO_4氧化法Fenton氧化法;氧化效率:Fenton氧化法KMnO_4氧化法Na_2S_2O_8氧化法;经济效率:KMnO_4氧化法Na_2S_2O_8氧化法Fenton氧化法。因此,对于不同的废水,根据其特点选择合适的处理方法是十分必要的。  相似文献   

16.
利用化学沉淀法、亚硫酸钠液相还原法、芬顿氧化联合工艺对高SCN~-含量有机制药废水进行处理。结果表明,在CuSO_4投加量34 g/L、pH为6、反应温度25℃、反应时间1 h的优化条件下,化学沉淀法COD由27.75 g/L降至10.48 g/L;在CuSO_4与Na_2SO_3投加量为1.6倍理论量,pH为3,反应时间10 min的优化条件下,亚硫酸钠液相还原法废水中的SCN~-去除率为99.85%,COD降至7.032 g/L;在H_2O_2投加量为1.2倍理论量,H_2O_2、Fe~(2+)摩尔比10:1,pH为3.5,反应时间1 h的优化条件下,芬顿试剂处理废水,COD降至1.411 g/L。联合法处理后,COD和SCN~-总去除率分别达94.91%和99.85%。  相似文献   

17.
为降低出水COD,提高采油废水的可生化性,采用O_3、O_3/H_2O_2组合工艺对某油田采油废水进行处理,考察氧化反应时间、O_3质量浓度、pH、H_2O_2投加量、n(H_2O_2)∶n(O_3)对废水处理效果的影响。结果表明,单独使用O_3处理油田采油废水时,在O_3为20 mg/L、反应时间为60 min、废水pH为8.50条件下,COD去除率为28.5%,B/C由0.08提至0.248;O_3/H_2O_2组合工艺的处理效果更显著,在O_3为30 mg/L、反应时间为60 min、H_2O_2投加量为0.24 g/L、废水pH为8.50的最佳条件下,COD去除率达到55.4%,B/C提升至0.440。氧化处理不仅降低了废水COD,还可提高废水的可生化性,是一种较为有效的预处理技术。  相似文献   

18.
采用Fenton—混凝沉淀法处理锂电池盖板冲洗废水,研究其最佳反应条件,并探讨各因素的影响机理。结果表明:室温条件下,在Fenton反应阶段,30%H_2O_2投加量为12.5 m L/L、FeSO_4·7H_2O投加量为4.0 g/L、pH为2.5、反应时间为1 h时,COD去除率可达91.81%;Fenton反应出水用PAC混凝沉淀法进行再处理,pH为中性或偏碱性、PAC投加量为80 mg/L条件下,最终出水COD去除率可达93.9%。  相似文献   

19.
针对制药废水二级生化处理出水仍存在COD_(Cr)和色度偏高的不足,试验采用改性粉煤灰吸附-Fenton氧化法对其进行深度处理研究。探讨了pH值、H_2O_2投加量、Fe~(2+)投加量、反应时间等因素对COD_(Cr)去除率的影响。结果表明,在加热温度为400℃时粉煤灰改性效果最佳。在此最佳改性粉煤灰吸附条件下,当系统pH值为5、反应时间为2 h,H_2O_2(30%)投加量为300 mg/L、Fe~(2+)投加量为100 mg/L的条件下,制药废水二级生化出水中的COD_(Cr)去除率达到74.5%。  相似文献   

20.
采用Fenton试剂法对环氧树脂生产废水进行处理。考察了pH值、反应时间、FeSO_4·7H_2O及H_2O_2投加量对废水COD_(Cr)去除效果的影响,研究了反应出水pH值与COD_(Cr)去除率之间的关系。通过试验确定了Fenton试剂法处理环氧树脂生产废水的最佳反应条件:pH值为3,反应时间为75 min,FeSO_4·7H_2O投加量为21.6 mmol/L,H_2O_2投加量为0.495 mol/L。在此条件下,废水COD_(Cr)去除率为59.9%,m(BOD_5)/m(COD_(Cr))从0.14提高到0.37,环氧树脂生产废水的可生化性大大提高;试验结果还表明,环氧树脂生产废水出水pH值与COD_(Cr)去除率具有一定联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号