首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用O_3/H_2O_2高级氧化工艺深度处理胞苷酸企业二级生化出水,考察了pH、H_2O_2用量、O_3浓度、反应时间等因素对深度处理效果的影响,探讨了有机磷矿化反应的动力学。结果表明,当废水有机磷质量浓度约为56 mg/L,COD约为640 mg/L时,适宜的反应条件为:pH 8.5,H_2O_2投加量20 mmol/L,O_3质量浓度12 mg/L,反应时间90 min;有机磷矿化反应遵循表观一级动力学,动力学常数为0.024 7 min-1。优化条件下,有机磷矿化率和COD去除率分别为91.6%和56.8%。O_3/H_2O_2氧化出水经混凝沉淀处理后,TP和COD符合纳管排放要求。  相似文献   

2.
O_3/H_2O_2高级氧化技术具有氧化能力强和无选择性等优点,被广泛用于高浓度、难降解和有毒有害的有机废水处理。考察了O_3/H_2O_2高级氧化技术在不同的处理条件(臭氧投加量、H_2O_2投加量、p H值、反应时间)下对实验室高浓度有机废水中COD的去除率影响,并通过页岩气采出水验证,结果表明:当臭氧投加量为40 mg·L~(-1)、双氧水投加量为0. 7 mg·L~(-1)、p H值为5、反应时间为40 min时,其COD去除率达90. 41%,可排入城市管网;在相同条件下处理COD浓度为1426 mg·L~(-1)的页岩气采出水,COD去除率达88. 3%。  相似文献   

3.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   

4.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

5.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

6.
利用Fenton+MnO_2+A/O组合工艺处理过氧化甲乙酮生产废水。在Fenton+MnO_2预处理阶段对影响废水COD去除率的主要因素进行了考察,得到反应的最佳条件:p H=2.7,30%H_2O_2投加量为0.1 L/L,FeSO_4·7H_2O投加量为5 g/L,MnO_2投加量为8 g/L,MnO_2氧化反应时间为45 min。废水经Fenton+MnO_2氧化预处理后可生化性由0.14提高到了0.25左右。废水经Fenton+MnO_2+A/O组合工艺处理后,出水COD稳定低于500 mg/L。  相似文献   

7.
《应用化工》2022,(9):2440-2443
采用Fenton氧化法对橡胶硫化促进剂生产废水进行预处理,考察了酸析法以及H_2O_2投加量、Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量为2.8 g/L,反应时间为40 min。此时COD的去除率达82.91%。将酸析与Fenton氧化法联合后COD的去除率可达到85.78%,效果良好,为后续蒸发结晶分离氯化钠、硫酸钠奠定了基础。  相似文献   

8.
利用微电解-Fenton组合工艺对油田压裂废水展开预处理研究,以COD去除率为考察指标,单独工艺正交试验结果表明:微电解的最优反应条件为Fe/C摩尔比2∶3、铁碳投加量50 g/L、反应时间60 min、pH值3;Fenton反应的最优条件为p H值3、反应时间90 min、H_2O_2加量12 m L/L、H_2O_2/Fe~(2+)摩尔比30。在最佳条件下,微电解和Fenton反应的COD去除率分别可达56.87%和45.61%,废水COD值由3 715 mg/L降至867.9 mg/L,总去除率达到76.54%。出水水质满足油田现场循环回用的标准。  相似文献   

9.
采用O_3/UV/H_2O_2耦合工艺对成分复杂、可生化性差的兰州某石化企业二级出水进行预处理,分析了不同因素对COD去除率及废水可生化性的影响。结果表明,当O_3投加量为62.63 mg/L,UV功率为25 W,照射时间为15 min,n(H_2O_2)/n(O_3)为0.5,原水pH为9时,COD去除率可达29.34%,BOD5/COD可由0.05增加到0.34。此工艺对石化二级出水水质具有明显的改善作用,同时大幅提升了废水的可生化性。  相似文献   

10.
以Fenton试剂氧化结合电解法去除湿熄焦废水COD和NH_3-N。结果表明:Fenton试剂氧化前处理中,稀释倍数为2,调节pH至3,n(H_2O_2)/n(Fe~(2+))=15,Fe~(2+)绝对投加量为0.38 mol/L,反应时间60 min时,COD去除率达76.5%,COD为128.3 mg/L;电解法再处理时,控制Cl-添加量7000 mg/L,电流密度12 m A/cm~2条件下电解120 min,调节pH至8,静置30 min,COD和NH_3-N去除率分别达到95.2%和93.7%,浓度降为26.2 mg/L和19.3 mg/L,能达到循环回用于湿熄焦要求,说明Fenton试剂氧化-电解法可对熄焦废水COD和NH_3-N进行有效去除。  相似文献   

11.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

12.
采用两段超声波结合H_2O_2氧化处理丙烯酸废水。考察了超声波频率、功率、H_2O_2投加量、废水初始pH等对处理效果的影响。一段超声波条件:频率=120 kHz,功率=400 W,H_2O_3投加量为0.7 mL/L,废水pH值为3~5,反应时间为50 min。二段超声波条件:频率=68 kHz,功率=250 W,H_2O_2投加量为0.8 mL/L,调节废水pH值为3~5,反应时间为1 h。经氧化处理丙烯酸废水BOD_5/COD比值(B/C值)由0.28提高至0.47,经生物法降解,实现出水COD60 mg/L。  相似文献   

13.
《广东化工》2021,48(1)
采用聚合硫酸铁(PFS)-Fenton氧化法对高浓度丙烯酸酯类乳液废水进行预处理。通过混凝实验研究了不同的混凝剂(PAC、FeCl_3、PFS)及助凝剂PAM投量、pH、絮凝时间对废水COD去除率的影响;Fenton氧化实验探讨了H_2O_2和FeSO_4投加量、初始反应pH值、反应时间等因素对混凝处理水样处理效果的影响。结果表明,混凝处理最佳混凝剂为PFS,PFS用量90 mL/L,PAM投药量为5 mL/L,絮凝时间为80 min,pH为6,最大COD去除率达61.4%;Fenton氧化实验最适宜条件为:H_2O_2(浓度30%)投加量28.6 mL/L,FeSO_4(浓度15%)投加量500 mL/L,初始反应pH值为3,反应时间为60 min。处理水COD降低到5195 mg/L,COD去除率达84.4%,可以满足接下来的生物系统对进水有机污染物浓度的要求,对于解决高浓度丙烯酸酯类乳液废水预处理提供了一种参考方案。  相似文献   

14.
采用O_3-H_2O_2协同氧化深度处理煤间接制油反渗透浓水,考察了O_3气体流量、初始PH、H_2O_2投加量、催化剂投加量对煤间接制油反渗透浓水处理效率的影响。结果表明:O_3-H_2O_2协同氧化深度处理煤间接制油反渗透浓水的优化运行参数为;O_3气体体积流量为30 mL/min,O_3投加量为108 mg/L,初始pH为8.0,H_2O_2投加量为63 mg/L。在此优化条件下,废水中COD由125.3 mg/L降低至67.5 mg/L去除率为46.1%。进一步表征和考察催化剂添加量对实验的影响,催化剂的结构和活性组分能强化氧化效果,在催化剂添加量为90g/L时,废水COD可降低至48.0 mg/L,去除率为61.7%。O_3-H_2O_2氧化能够有效实现煤间接制油反渗透浓水的深度处理,处理后出水主要指标均可达到GB31571-2015排放标准。  相似文献   

15.
利用化学沉淀法、亚硫酸钠液相还原法、芬顿氧化联合工艺对高SCN~-含量有机制药废水进行处理。结果表明,在CuSO_4投加量34 g/L、pH为6、反应温度25℃、反应时间1 h的优化条件下,化学沉淀法COD由27.75 g/L降至10.48 g/L;在CuSO_4与Na_2SO_3投加量为1.6倍理论量,pH为3,反应时间10 min的优化条件下,亚硫酸钠液相还原法废水中的SCN~-去除率为99.85%,COD降至7.032 g/L;在H_2O_2投加量为1.2倍理论量,H_2O_2、Fe~(2+)摩尔比10:1,pH为3.5,反应时间1 h的优化条件下,芬顿试剂处理废水,COD降至1.411 g/L。联合法处理后,COD和SCN~-总去除率分别达94.91%和99.85%。  相似文献   

16.
采用O_3/Na_2S_2O_8耦合体系预处理制药废水,研究了O_3通气量、Na_2S_2O_8投加量、pH、反应时间等因素对COD和色度去除率的影响。结果表明,COD和色度的去除率随着Na_2S_2O_8投加量、O_3通气量、反应时间的增加而增大,在碱性条件下更有利于废水中污染物的去除。在O_3通气量为1.2 g/(h·L)、Na_2S_2O_8投加质量浓度为8 g/L、pH=8.6、反应时间为150 min的条件下,制药废水的COD、色度的去除率分别达到68.3%、97%,B/C由0.12提高到0.38。  相似文献   

17.
针对焦化废水二级生化处理工艺出水化学需氧量(COD)难以达标的问题,采用实际焦化废水,通过开展半连续实验室小试试验,对比研究了单独臭氧氧化、O_3/H_2O_2氧化和UV-Fenton氧化3种工艺深度处理焦化废水的效果,并对不同工艺出水的UV_(254)、BOD_5/COD、发光细菌毒性、三维荧光光谱进行分析,研究不同高级氧化工艺对出水水质的影响规律。结果表明:增加臭氧投加量和添加H_2O_2能显著提高焦化废水二级生化工艺出水中有机物的去除效果。进水COD为(200±10)mg/L、O_3投加量为30 mg/L时,反应120 min后单独臭氧氧化对COD的去除率仅为36%;而对于UV-Fenton氧化,进水COD为(200±10)mg/L、H_2O_2(30%)投加浓度为2 g/L、Fe~(2+)与H_2O_2摩尔比为1∶10时,COD的去除率为50%;单独臭氧氧化和UV-Fenton均不能满足排放标准。进水COD为(200±10)mg/L、O_3投加量为30 mg/L、H_2O_2(30%)投加浓度为2 g/L,反应120 min后COD去除率达到63%,O_3/H_2O_2氧化工艺出水COD达到74 mg/L,满足GB 16171—2012《炼焦化学工业污染物排放标准》的要求。3种工艺中,O_3/H_2O_2氧化的COD去除效果最好,这主要归因于O_3和H_2O_2协同产生强氧化性自由基,但当H_2O_2浓度过高时,体系中产生的·OH反而与H_2O_2反应,从而导致O_3/H_2O_2体系的氧化能力下降。3种工艺都能有效降低出水毒性,出水发光细菌急性毒性试验显示,单独O_3氧化、O_3/H_2O_2氧化处理15 min后,相对发光度分别上升到90%和87%,UV-Fenton氧化处理30 min后,出水的相对发光度上升到71.57%。与单独臭氧氧化和O_3/H_2O_2氧化工艺相比,UV-Fenton工艺处理出水急性毒性相对较高,可能与臭氧的消毒作用有关。3种工艺对废水可生化性的提高程度不明显,BOD_5/COD从0.02最大提升到0.1左右。UV_(254)和三维荧光光谱的对比分析表明,3种工艺对出水中芳香族化合物和荧光物质具有明显的分解作用。单独O_3氧化可优先降解废水中腐植酸类物质中的共轭双键结构,而O_3/H_2O_2氧化工艺对环状共轭污染物的氧化效果更显著。随着UV-Fenton氧化处理,焦化废水中大分子的类腐植酸以及紫外区类富里酸优先被氧化降解,最终转化为可见区类富里酸和类蛋白质,而类蛋白质和可见区类富里酸物质在出水中仍存在较高浓度,UV-Fenton氧化工艺对荧光物质去除能力最差。  相似文献   

18.
以活性炭吸附和Fenton氧化技术处理含盐有机废水。结果表明,活性炭预处理过程中,当废水pH为6时,投加8 g/L的活性炭,30 min后COD去除率达到66.8%,活性炭预处理后,投加12 mmol/L FeSO_4·7H_2O、240 mmol/L30%H_2O_2,30 min后COD去除率达到82.4%;Fenton氧化技术直接处理废水时,调节废水pH为6,FeSO_4·7H_2O和30%H_2O_2分别为15 mmol/L和300 mmol/L时,COD去除率为41.3%,继续投加8 g/L活性炭,30 min后COD去除率达到78.8%。  相似文献   

19.
本文考察了FeOOH催化H_2O_2/O_3氧化处理化工废水生化尾水的效果,结果表明:γ-FeOOH/H_2O_2/O_3构成的多元催化氧化体系,比γ-FeOOH/O_3及O_3氧化体系效率更高。FeOOH提高了H_2O_2/O_3氧化TOC的能力,促进了反应过程中·OH的产生。在γ-FeOOH投加量为0.5 g/L,H_2O_2投加量为50 mg/L,O_3投加量为5 mg/min,反应60 min后,TOC去除率达50%以上。  相似文献   

20.
根据环氧树脂生产废水的特点,采用Fenton氧化联合耐盐组合菌的SBR工艺对其进行处理。通过Fenton氧化预处理试验确定了最佳反应条件:p H 4.0,温度70℃,H_2O_2投加量80 m L/L,n(H_2O_2)/n(Fe~(2+))为0.007 6,反应时间75 min。在此条件下,COD去除率达79%,废水可生化性得到显著提高,B/C由0.018提高至0.33。Fenton氧化出水经稀释进入含耐盐组合菌的SBR工艺,连续驯化运行36 d,系统保持较高的耐盐性和COD去除率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号