首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用化学成分分析、金相检验、能谱及X射线物相分析等方法 ,对取自两地的两支中央空调冷却水管腐蚀开裂进行了分析比较 .结果表明 :冷却水中含有溶解氧及硫、氯等腐蚀性离子而缓蚀剂浓度不够是两支水管腐蚀失效的主要原因 ,不同地域的水质及腐蚀介质差别对冷却水管的腐蚀开裂速度与特征有一定影响  相似文献   

2.
重催油浆换热器管板开裂的应力腐蚀失效   总被引:3,自引:1,他引:3  
锦州石化六厂的重催油浆换热器,在投入使用半年多就在浮头管板处出现多处裂纹,裂纹大多从管束开始呈环状沿径向管板延伸,导致不能正常生产,造成较大的经济损失。介绍了此换热器的工艺条件,对开裂的浮头管板进行断口宏观形貌、微观形貌、准解理微观形貌、腐蚀产物和管桥部位裂纹分析,并得出应力腐蚀是引起重催油浆换热器管板开裂的重要原因之一。分析油浆换热器管板受力和腐蚀环境:管板在焊接残余应力、温差应力、气-液两相流的诱导振动及装配应力的相互叠加作用下,受拉应力;在高温环烷酸和高温重硫醇、重硫醚的腐蚀环境中,导致应力腐蚀开裂。  相似文献   

3.
锦州石化公司催化裂化装置油浆蒸气发生器,为浮头式蒸气发生器,投入使用一年多就发生失效,其失效形式表现为蒸气发生器管板大面积开裂,裂纹大多从管束开始呈环状及径向管板延伸。利用对比法、金相显微分析方法以及开裂机理分析方法,对重催油浆蒸气发生器管板开裂原因进行了管板化学成份、管板机械性能、宏观、微观断口形貌及管板开裂过程分析。实验结果表明,管板的化学成份和机械性能均符合国标GB6654-96,说明管板开裂不是由于材质本身造成的;裂纹符合应力腐蚀特征;壳程内蒸气的发生和流动诱发振动,使管束发生振动,特别在汽液两相流作用下使振动加剧,使管板焊接接头部位产生循环载荷造成疲劳破坏。得出疲劳和应力腐蚀共同作用引起重催油浆蒸气发生器管板的开裂,其中疲劳是管板开裂的最重要的原因。提出了简单易行的改进措施。  相似文献   

4.
通过腐蚀电化学测试和腐蚀形貌检测,借助表面物相结构和元素成分分析,对某电厂2.5×10~4t/d的4号M ED海水淡化装置HAl77-2铜合金热交换管进行失效分析.结果表明,管板或隔板与铜合金管之间出现横向开裂的主要诱因在于机组振动导致铜管的磨损,继而产生缝隙腐蚀,同时管子受到外力剪切,引起腐蚀疲劳发生开裂.麻坑腐蚀属于脱锌腐蚀,其原因与铜管表面不均匀、不致密的结垢层有关.  相似文献   

5.
本文主要研究HSn70—1钖黄铜管在炉烟处理水中的腐蚀行为,并研究了硫酸亚铁处理在此种冷却水中的防护效果,通过实验室试验和现场调查,分析讨论了炉烟处理冷却水中铜管产生腐蚀的原因,并提出了一种采用炉烟处理冷却水的新方案——二氧化硫催化氧化处理法,以减弱循环水对铜管的腐蚀。  相似文献   

6.
为研究2507双相不锈钢在含铁氧化菌IOB冷却水溶液中的腐蚀行为,采用失重法、扫描电镜和能谱及电化学测试等方法,分析了2507钢在含体积比为0.5%、1%及2%IOB冷却水模拟溶液中浸泡30d后的腐蚀行为.实验结果表明:冷却水溶液中含IOB大大加速了2507双相不锈钢的腐蚀,但腐蚀程度仍属轻度腐蚀,平均腐蚀速率随着IOB浓度增加先升后降,1%IOB下达到最大.随着IOB浓度增加结瘤形体增大,但均未出现点蚀坑,点蚀电位高达约1.25V.该钢抗含铁氧化菌冷却水的点腐蚀能力优良.  相似文献   

7.
镁合金应力腐蚀开裂敏感性影响因素及防护措施   总被引:1,自引:0,他引:1  
在腐蚀性环境中,镁合金具有十分强烈的应力腐蚀敏感性,往往降低材料性能,制约镁合金的应用.基于近些年来镁合金应力腐蚀开裂导致了一系列工业事故频繁发生的事实,需要了解和重视镁合金应力腐蚀开裂敏感性的影响因素及防护方法,针对影响镁合金应力腐蚀开裂敏感性的各项因素进行了综合的分析,并从应力,腐蚀环境,合金品质等方面对国内外镁合金应力腐蚀开裂防护措施的最新进展进行了介绍,并提出了镁合金应力腐蚀及防护领域未来所面临的任务.  相似文献   

8.
本文通过SEM、TEM、EDX及金相分析等手段,对焊口破裂件进行了分析,证明该焊口破裂属硫化氢引起的应力腐蚀开裂。  相似文献   

9.
通过对某合成氨装置中置锅炉的腐蚀形貌、工作条件的分析,阐明了其应力腐蚀开裂的原因,并提出预防措施。这对类似设备发生应力腐蚀的预防有一定参考价值。  相似文献   

10.
埋地油气管道腐蚀研究   总被引:1,自引:0,他引:1  
关于埋地油气管道腐蚀研究一直都是油气储运及集输工程的一个重要课题.阐述埋地油气输送管道腐蚀的主要形式及机理.在输油管道的内腐蚀、杂散电流干扰、应力腐蚀开裂、涂层失效等方面进行了分析,探讨高强度管道钢腐蚀中最突出的问题.  相似文献   

11.
本文分析了金属的应力腐蚀开裂与焊接应力和氢的关系,讨论了防止焊接时金属应力腐蚀开裂的工艺措施和方法。  相似文献   

12.
利用热泵技术回收利用电站凝汽器冷却水余热资源是节能减排的一项重要措施.调查和研究了溴化锂吸收式热泵在电站冷却水余热回收中的应用、存在的主要问题和解决措施.研究表明:热泵回收的余热可用于加热供暖用的热网水、进除氧器的补水和凝汽器凝结水等;污垢和腐蚀是影响电站溴化锂热泵安全经济运行的主要问题;添加阻垢缓蚀剂、杀菌剂和清洗可防治污垢;合理选材、添加缓蚀剂和保持换热管清洁可防治腐蚀.  相似文献   

13.
为考察支主管间设置的加劲板构造和支主管截面宽度比对高强方钢管轻骨料混凝土桁架T型节点破坏模式、承载力、连接区应力和应变的分布及演化等受力性能的影响,对加劲节点和常规节点进行了支管轴压静力加载试验.试验结果表明:高强方钢管轻骨料混凝土桁架T型节点的典型破坏模式有连接区主管受压上翼缘凹陷、主管腹板凸曲、主管弯曲、支管侧倾失稳、加劲板屈曲、支主管焊缝开裂和加劲板与支管焊缝开裂等.常规节点的承载力取决于支管根部及其焊缝的承载强度和连接区主管上翼缘的局部承压强度,其荷载-位移曲线形成流塑平台.加劲节点的承载力取决于包括加劲板扩散效应的支管根部及其焊缝的承载强度、连接区主管上翼缘扩散承压强度和加劲板屈曲强度,其荷载-位移曲线呈渐变上升趋势,没有屈服平台.加劲板明显提高了T型节点的承载力,加劲节点的屈服承载力和极限承载力较常规节点分别提高10.0%~40.0%和15.0%~48.3%,加劲节点的承载力随支主管截面宽度比的增加而提高.  相似文献   

14.
针对常减压装置中常压蒸馏塔塔顶馏出线腐蚀开裂现象,通过宏观微观监测手段,从材料化学成份、宏观形貌、腐蚀环境、施工质量等方面分析了常减压装置中常压蒸馏塔塔顶馏出线腐蚀开裂的原因,并提出了防范措施。  相似文献   

15.
研究了火炬燃烧器管线开裂区域的破坏机理,通过对管线进行低倍宏观分析、材质分析、显微镜金相分析、扫描电子显微镜(SEM)微观形貌及能谱分析(EDS)与实验相结合的手段,找出了管线失效开裂的原因,进一步分析了敏感环境(介质)、敏感材料和应力状况对管线开裂失效造成的影响。结果表明,在一定的温度下,管线内形成H2S+CO2+H2O的酸性腐蚀环境,火炬燃烧器管线的不锈钢材质敏化严重,存在严重的晶间腐蚀;晶间腐蚀造成管壁表面晶粒剥落,产生点蚀坑,点蚀坑处又成为应力腐蚀裂纹的裂纹源;火炬燃烧器管线在制造加工、装置运行等过程中会产生一定程度的应力集中,在腐蚀介质、敏感材质和应力集中三个因素的影响下,火炬燃烧器管线会发生晶间型应力腐蚀开裂而失效。  相似文献   

16.
本文对垂直单管系统中立,支管散热,在住宅中所引起的室温变化及竖向温度失均进行了分析,通过分析和结合实测结果得出了:由于立、支管散热量占节能住宅的负荷比例较大,因此,若不计算立、支管散热,当系统在设计参数下运行时,将使房间温度过热。  相似文献   

17.
国内外冷却水处理技术   总被引:1,自引:0,他引:1  
分析了循环冷却水中的腐蚀,结垢,生物污染3个问题的形成原因及对系统的危害,介绍了国内外几种不同的循环冷却水的处理方法,分析各自的优缺点及相应的设备,提出了适合不同情况的水处理方法。  相似文献   

18.
竖直U型埋地换热器两支管间热量回流的分析   总被引:2,自引:0,他引:2  
竖直U型埋地换热器两支管间存在的热量回流(“热短路”)现象对换热器实际的传热性能有较大的影响,这是工程技术人员在设计和施工U型埋地换热器时必须考虑的问题。本文利用地热换热器传热模型及设计软件,对竖直U型埋地换热器两支管间的热量回流现象进行了分析,着重讨论了两支管间距和回灌材料的导热系数对热量回流的影响。提出了减小热量回流的措施。  相似文献   

19.
以再生水用于循环冷却水系统中铁细菌的生长特性和其对碳钢腐蚀的影响为研究目标,采用电化学手段研究铁细菌对碳钢腐蚀的影响,应用环境扫描电镜分析碳钢挂片腐蚀的表面形貌特征,并进行EDS能谱分析.结果表明:循环冷却水中铁细菌生长所需要的最佳碳源和氮源分别为柠檬酸铁铵和NaNO3;铁细菌生长过程中开路电位和极化电阻先正移再负移最后保持不变;由于生物膜分布不均匀,挂片表面会产生球状和层状两种元素组分存在明显差异的腐蚀结构;铁细菌的参与可明显影响碳钢挂片的元素成分含量,使金属的腐蚀加重.  相似文献   

20.
通过静态阻垢试验、旋转挂片腐蚀试验、动态模拟试验等试验手段,对尼龙66盐外排水经处理后与新鲜的补充水按1:1混合回用于循环冷却水系统中所产生的结垢和腐蚀进行试验,结果表明系统运行正常,降低了生产成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号