首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
运用ANSYS建立了某水电站升船机的齿轮齿条爬升机构的有限元模型,考虑了螺母螺杆副摩擦力及环境温度等因素,计算了齿轮齿条在极端工况啮合时的接触应力和Von mises应力;校核了齿轮齿条机构的疲劳强度。  相似文献   

2.
以三峡升船机船厢驱动系统齿轮齿条传动为研究对象,基于共轭啮合理论推导修形齿轮齿廓方程,建立齿轮齿条传动三维接触有限元分析模型,通过罚函数法建立动力接触系统有限元方程,仿真计算齿轮齿条传动的综合位移、等效应力及齿面接触应力。建立含齿廓修形和轴线偏差的齿轮齿条接触有限元模型,分析了轮齿修形与轴线偏差对齿轮齿条传动啮合性能的影响,为三峡升船机的可靠运行提供依据。  相似文献   

3.
基于ADAMS的齿轮齿条刚柔耦合啮合分析   总被引:1,自引:0,他引:1  
通过CATIA建立大型民机齿轮齿条式前轮转弯机构中齿轮齿条运动机构的三维实体模型,在ABAQUS中建立有限元模型并定义相关接触参数,对齿轮齿条啮合情况进行齿面接触应力以及齿根弯曲应力的分析。以Hertz弹性碰撞理论为基础,在ADAMS中进行了齿轮齿条刚体啮合力计算。并在刚体啮合力计算的基础上将齿轮和齿条作为柔性体,在ADAMS中进行刚柔耦合啮合力及齿根应力分析,将啮合力结果与刚体分析进行对比发现其基本吻合,而齿根弯曲应力与有限元分析结果则相差24.8%。  相似文献   

4.
自升式海洋平台齿轮齿条升降机构强度分析   总被引:1,自引:0,他引:1  
采用Pro/Engineer软件建立海洋平台升降系统齿轮齿条啮合的三维几何模型,并将模型导入Abaqus软件,对齿轮齿条的动态啮合过程进行有限元分析,得到齿轮齿条动态啮合过程中接触应力以及齿根应力的变化规律。  相似文献   

5.
运用Pro/E软件对某自升式海洋平台升降系统的齿轮齿条进行三维建模,计算了平台在预压状态下齿轮齿条的应力,分析了齿轮齿条在不同啮合位置时的应力状况和齿轮及齿条齿面接触应力的分布情况,并着重对重点区域的接触应力进行了分析。结果表明,在一个啮合周期内,接触应力趋于对称分布,最大应力出现在单齿啮合区间;齿轮齿条啮合过程中,接触面上的最大应力出现在轮齿的边缘部位,沿齿宽方向逐渐递减。  相似文献   

6.
超大模数齿轮缺乏成熟的强度计算理论.针对风电安装船齿轮齿条式升降系统中所设计的超大模数渐开线圆柱齿轮,通过分析渐开线齿轮变位原理,基于Pro/E建立精确的齿轮齿条啮合参数化模型.在分析升降系统实际工况的基础上,研究齿轮齿条在一个啮合周期内接触应力及弯曲应力的变化规律.结果显示,接触应力在齿面成不均匀分布,发生较明显的边缘效应;齿根拉应力与压应力大小不同;最大接触应力发生在单齿啮合区的下界点上,最大弯曲应力出现在单齿啮合区上界点上.  相似文献   

7.
《机械传动》2013,(11):38-42
应用有限元法考察了齿形误差对齿轮最大接触应力和啮合刚度的影响。基于齿廓方程在ANSYS中精确建立了理想齿廓齿轮有限元模型;基于移动节点的方法,建立了误差齿廓齿轮有限元模型。通过计算啮合周期内多个啮合位置有限元模型,得到了理想齿廓齿轮和误差齿廓齿轮最大接触应力的分布状态,分析了齿形误差对最大接触应力的影响程度;得到了理想齿廓齿轮和误差齿廓齿轮啮合刚度的分布规律,证明了齿形误差降低了齿轮的啮合刚度。  相似文献   

8.
以渐开线直齿圆柱齿轮为研究对象,建立了齿轮啮合非线性接触有限元模型,运用完全牛顿-拉普森方法进行啮合过程的仿真计算,并将结果与赫兹公式计算所得的接触应力值进行比较,验证了有限元模型的有效性;在此基础上进一步分析了不同啮合位置下齿轮的弯曲应力分布情况,得到了齿根弯曲应力在啮合过程中的变化规律,为提高齿轮强度和齿轮的优化设计提供了理论依据。  相似文献   

9.
建立了单圆角逻辑齿条刀具的齿顶圆半径的公式,得出齿顶圆半径与连接逻辑点的关系,并推出了两圆角逻辑齿条刀具的齿顶曲线方程。根据逻辑齿条刀具与逻辑齿轮之间相互啮合关系,求出逻辑齿轮齿根过渡曲线方程。通过Matlab编程求出逻辑齿轮齿廓上的点,拟合画出齿轮齿廓。建立了两种齿条刀具下的逻辑齿轮三维模型,运用Workbench对单齿啮合的逻辑齿轮进行静力有限元分析,得到逻辑齿轮的应力大小分布,结果表明单圆角齿条刀具对应齿根过渡曲线的逻辑齿轮弯曲强度较好。  相似文献   

10.
针对齿轨列车车轮踏面磨耗情况下难以探究齿轮齿条接触状态规律的问题,提出了一种基于Hertz接触理论的考虑车轮踏面磨耗情况的齿轮齿条齿面接触应力计算模型。首先,分析了磨耗情况下齿轮齿条的接触关系,获得了接触应力计算关键参数随车轮磨耗的变化规律,并结合Hertz接触理论构建了考虑车轮磨耗的齿轮齿条接触应力计算模型;然后,选取某工程齿轮齿条参数进行计算,获得了磨耗周期内的齿面接触应力分布,并通过27组有限元仿真试验获得了不同磨耗量、不同接触位置的齿轮齿条接触应力数据,与上述计算模型结果进行了对比;最后,运用上述计算模型进一步分析了车轮磨耗影响接触应力规律的内在机制和关键因素。结果表明,模型结果与仿真计算结果的最大相对误差为7.71%,验证了计算模型的准确性;车轮踏面磨耗量越大,齿轮齿条啮入点附近的接触应力越大,其影响机制是车轮磨耗导致啮入点附近驱动齿轮曲率半径急剧减小;增大初始中心距和齿条齿顶圆角影响系数,可降低车轮踏面磨耗对接触应力的影响,并可通过减小高度调整周期来优化接触状态情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号