首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
View selection for designing the global data warehouse   总被引:1,自引:0,他引:1  
A global data warehouse (DW) integrates data from multiple distributed heterogeneous databases and other information sources. A global DW can be abstractly seen as a set of materialized views. The selection of views for materialization in a DW is an important decision in the design of a DW. Current commercial products do not provide tools for automatic DW design. We provide a general method that, given a set of select-project-join queries to be satisfied by the DW, generates sets of materialized views that satisfy all the input queries. This process is complex since ‘common subexpressions' between the queries need to be detected and exploited. Our method is then applied to solve the problem of selecting such a materialized view set that fits in the space allocated to the DW for materialization and minimizes the combined overall query evaluation and view maintenance cost. We design algorithms which are implemented and we report on their experimental evaluation.  相似文献   

2.
A data warehouse (DW) can be seen as a set of materialized views defined over remote base relations. When a query is posed, it is evaluated locally, using the materialized views, without accessing the original information sources. The DWs are dynamic entities that evolve continuously over time. As time passes, new queries need to be answered by them. Some of these queries can be answered using exclusively the materialized views. In general though new views need to be added to the DW.In this paper we investigate the problem of incrementally designing a DW when new queries need to be answered and possibly extra space is allocated for view materialization. Based on an AND/OR dag representation of multiple queries, we model the problem as a state space search problem. We design incremental algorithms for selecting a set of new views to additionally materialize in the DW that: (a) fits in the extra space, (b) allows a complete rewriting of the new queries over the materialized views, and (c) minimizes the combined new query evaluation and new view maintenance cost. Finally, we discuss methods for pruning the search space so that efficiency is improved.  相似文献   

3.
Designing data warehouses   总被引:9,自引:0,他引:9  
A Data Warehouse (DW) is a database that collects and stores data from multiple remote and heterogeneous information sources. When a query is posed, it is evaluated locally, without accessing the original information sources. In this paper we deal with the issue of designing a DW, in the context of the relational model, by selecting a set of views to materialize in the DW. First, we briefly present a theoretical framework for the DW design problem, which concerns the selection of a set of views that (a) fit in the space allocated to the DW, (b) answer all the queries of interest, and (c) minimize the total query evaluation and view maintenance cost. We then formalize the DW design problem as a state space search problem by taking into account multiquery optimization over the maintenance queries (i.e., queries that compute changes to the materialized views) and the use of auxiliary views for reducing the view maintenance cost. Finally, incremental algorithms and heuristics for pruning the search space are presented.  相似文献   

4.
Web数据集成系统基于QC模型的物化视图选择   总被引:2,自引:0,他引:2  
在Web数据集成系统中,物化视图能够有效地减少网络传输代价,提高系统的查询效率.如何选择查询进行物化,使得选中的查询满足集成层的空间限制,同时获取最大物化收益,成为集成系统中一个迫切需要解决的问题.传统方法没有考虑到海量XML查询之间的包含关系,其选择的物化视图中可能包含冗余的信息.针对上述问题,提出了①Web数据集成系统中海量查询集合的QC(query containment)模型,该模型能够捕捉查询之间最常见的包含关系;②基于QC模型的物化视图选择算法,算法考虑了物化视图选择相关的主要因素,包括查询提交的频率、空间代价、查询重写能力和查询结果的完备性,提出了查询位图的物化视图组织方式,从而获取更加合理的物化视图选择方案.实验结果证明了该方法的有效性.  相似文献   

5.
OLAP queries involve a lot of aggregations on a large amount of data in data warehouses. To process expensive OLAP queries efficiently, we propose a new method to rewrite a given OLAP query using various kinds of materialized views which already exist in data warehouses. We first define the normal forms of OLAP queries and materialized views based on the selection and aggregation granularities, which are derived from the lattice of dimension hierarchies. Conditions for usability of materialized views in rewriting a given query are specified by relationships between the components of their normal forms. We present a rewriting algorithm for OLAP queries that can effectively utilize materialized views having different selection granularities, selection regions, and aggregation granularities together. We also propose an algorithm to find a set of materialized views that results in a rewritten query which can be executed efficiently. We show the effectiveness and performance of the algorithm experimentally.  相似文献   

6.
View materialization is an effective method to increase query efficiency in a data warehouse and improve OLAP query performance. However, one encounters the problem of space insufficiency if all possible views are materialized in advance. Reducing query time by means of selecting a proper set of materialized views with a lower cost is crucial for efficient data warehousing. In addition, the costs of data warehouse creation, query, and maintenance have to be taken into account while views are materialized. In this paper, we propose efficient algorithms to select a proper set of materialized views, constrained by storage and cost considerations, to help speed up the entire data warehousing process. We derive a cost model for data warehouse query and maintenance as well as efficient view selection algorithms that effectively exploit the gain and loss metrics. The main contribution of our paper is to speed up the selection process of materialized views. Concurrently, this will greatly reduce the overall cost of data warehouse query and maintenance.  相似文献   

7.
Applications ranging from algorithmic trading to scientific data analysis require real-time analytics based on views over databases receiving thousands of updates each second. Such views have to be kept fresh at millisecond latencies. At the same time, these views have to support classical SQL, rather than window semantics, to enable applications that combine current with aged or historical data. In this article, we present the DBToaster system, which keeps materialized views of standard SQL queries continuously fresh as data changes very rapidly. This is achieved by a combination of aggressive compilation techniques and DBToaster’s original recursive finite differencing technique which materializes a query and a set of its higher-order deltas as views. These views support each other’s incremental maintenance, leading to a reduced overall view maintenance cost. DBToaster supports tens of thousands of complete view refreshes per second for a wide range of queries.  相似文献   

8.
In the Big Data Era, the management of energy consumption by servers and data centers has become a challenging issue for companies, institutions, and countries. In data-centric applications, Database Management Systems are one of the major energy consumers when executing complex queries involving very large databases. Several initiatives have been proposed to deal with this issue, covering both the hardware and software dimensions. They can be classified in two main approaches assuming that either (a) the database is already deployed on a given platform, or (b) it is not yet deployed. In this study, we focus on the first set of initiatives with a particular interest in physical design, where optimization structures (e.g., indexes, materialized views) are selected to satisfy a given set of non-functional requirements such as query performance for a given workload. In this paper, we first propose an initiative, called Eco-Physic, which integrates the energy dimension into the physical design when selecting materialized views, one of the redundant optimization structures. Secondly, we provide a multi-objective formalization of the materialized view selection problem, considering two non-functional requirements: query performance and energy consumption while executing a given workload. Thirdly, an evolutionary algorithm is developed to solve the problem. This algorithm differs from the existing ones by being interactive, so that database administrators can adjust some energy sensitive parameters at the final stage of the algorithm execution according to their specifications. Finally, intensive experiments are conducted using our mathematical cost model and a real device for energy measurements. Results underscore the value of our approach as an effective way to save energy while optimizing queries through materialized views structures.  相似文献   

9.
基于多维护策略的物化视图选择方法   总被引:1,自引:0,他引:1  
物化视图是数据仓库环境中提高OLAP查询效率的重要手段,因此,物化视图的选择是数据仓库设计中重要的决策之一。本文提出的物化视图选择方法目标是选择合适的视图进行物化,使得查询处理的总代价和物化视图的维护代价最低,提出了物化视图收益模型,并在此基础上基于视图的多维护策略提出了物化视图选择的方法:基于增量和重计算的物化视图选择算法IRMVS、基于增量策略的物化视图选择算法IMVS和基于重计算策略的物化视图选择算法RMVs和基于增量策略的物化后代视图选择算法IMDVS,理论分析和实验表明这些算法是有效可行的。  相似文献   

10.
Selection of views to materialize in a data warehouse   总被引:4,自引:0,他引:4  
A data warehouse stores materialized views of data from one or more sources, with the purpose of efficiently implementing decision-support or OLAP queries. One of the most important decisions in designing a data warehouse is the selection of materialized views to be maintained at the warehouse. The goal is to select an appropriate set of views that minimizes total query response time and the cost of maintaining the selected views, given a limited amount of resource, e.g., materialization time, storage space, etc. In This work, we have developed a theoretical framework for the general problem of selection of views in a data warehouse. We present polynomial-time heuristics for a selection of views to optimize total query response time under a disk-space constraint, for some important special cases of the general data warehouse scenario, viz.: 1) an AND view graph, where each query/view has a unique evaluation, e.g., when a multiple-query optimizer can be used to general a global evaluation plan for the queries, and 2) an OR view graph, in which any view can be computed from any one of its related views, e.g., data cubes. We present proofs showing that the algorithms are guaranteed to provide a solution that is fairly close to (within a constant factor ratio of) the optimal solution. We extend our heuristic to the general AND-OR view graphs. Finally, we address in detail the view-selection problem under the maintenance cost constraint and present provably competitive heuristics.  相似文献   

11.
物化视图能够有效地提高空间数据仓库的查询效率,但由于空间操作的复杂性,传统数据仓库中物化视图的选择算法不能很好地应用于空间数据仓库。为了在存储空间约束下选择查询进行物化,并动态调整物化视图集,以适应用户查询的时变性和即席查询,提出了空间物化视图选择算法SMVS。实验结果表明该算法是有效可行的,不仅能够提高查询性能,而且解决了查询响应性能随用户查询分布变化而下降的问题。  相似文献   

12.
数据仓库中物化视图选择策略   总被引:2,自引:0,他引:2  
为了提高决策支持和OLAP查询的响应效率,数据仓库多采用物化视图的思想.因此,物化视图的选择策略是数据仓库研究的重要问题之一.其目标是选出一组存储、维护代价与查询代价的总和为最小的物化视图.提出一个以MVPP(multi-view processing plan)为视图选择的搜索空间的物化视图选择新算法--VSMF(views selection base on multi-factor)算法.该算法在存储空间约束下同时实现多查询最优化和视图维护最优化.  相似文献   

13.
区块链具有去中心化、不可篡改和可追溯等特性,可应用于金融、物流等诸多行业.由于所有交易数据按照交易时间顺序存储在各个区块,相同类型的交易数据通常会散布在诸多区块之中,降低了面向历史区块的追溯查询的处理效率.索引构建和物化视图是提升查询性能的两种典型方法,但当待处理数据分布于多个区块时,使用索引无法改善I/O访问效率,而物化视图可有效应对这个问题.然而,由于区块链系统的特点明显区别于关系数据库,传统的面向关系数据库的物化视图技术无法被直接应用到区块链之中.鉴于此,首次提出一种面向区块链的高效物化视图机制,具有如下特征:(1)将视图维护操作与共识过程同时执行,降低该操作对系统性能的影响;(2)使用字典树加快以区块为单位的多物化视图维护进程;(3)以默克尔验证的方式确保物化结果不被恶意篡改,进而确保查询结果可信.所提出的物化视图维护机制已经被集成到一个区块链系统中,并通过实验来验证该机制的高效性.  相似文献   

14.
The design of an OLAP system for supporting real-time queries is one of the major research issues. One approach is to use data cubes, which are materialized precomputed multidimensional views of data in a data warehouse. We can derive a set of data cubes to answer each frequently asked query directly. However, there are two practical problems: (1) the maintenance cost of the data cubes, and (2) the query cost to answer those queries. Maintaining a data cube requires disk storage and CPU computation, so the maintenance cost is related to the total size as well as the total number of data cubes materialized. In most cases, materializing all data cubes is impractical. The maintenance cost may be reduced by merging some data cubes. However, the resulting larger data cubes will increase the query cost of answering some queries. If the bounds on the maintenance cost and the query cost are too strict, we help the user decide which queries to be sacrificed and not taken into consideration. We have defined an optimization problem in data cube system design. Given a maintenance-cost bound, a query-cost bound and a set of frequently asked queries, it is necessary to determine a set of data cubes such that the system can answer a largest subset of the queries without violating the two bounds. This is an NP-hard problem. We propose approximate Greedy algorithms GR, 2GM and 2GMM, which are shown to be both effective and efficient by experiments done on a census data set and a forest-cover-type data set.  相似文献   

15.
Modern database systems desperate for the ability to support highly scalable transactions and efficient queries simultaneously for real-time applications. One solution is to utilize query optimization techniques on the on-line transaction processing (OLTP) systems. The materialized view is considered as a panacea to decrease query latency. However, it also involves the significant cost of maintenance which trades away transaction performance. In this paper, we examine the design space and conclude several design features for the implementation of a view on a distributed log-structured merge-tree (LSMtree), which is a well-known structure for improving data write performance. As a result, we develop two incremental view maintenance (IVM) approaches on LSM-tree. One avoids join computation in view maintenance transactions. Another with two optimizations is proposed to decouple the view maintenance with the transaction process. Under the asynchronous update, we also provide consistency queries for views. Experiments on TPC-H benchmark show our methods achieve better performance than straightforward methods on different workloads.  相似文献   

16.
We consider a workload of aggregate queries and investigate the problem of selecting materialized views that (1) provide equivalent rewritings for all the queries, and (2) are optimal, in that the cost of evaluating the query workload is minimized. We consider conjunctive views and rewritings, with or without aggregation; in each rewriting, only one view contributes to computing the aggregated query output. We look at query rewriting using existing views and at view selection. In the query-rewriting problem, we give sufficient and necessary conditions for a rewriting to exist. For view selection, we prove complexity results. Finally, we give algorithms for obtaining rewritings and selecting views.  相似文献   

17.
数据仓库通常要对大量的数据进行运算,以精简的结果来回答用户的查询,这一特点使得物化视图技术在数据仓库中尤为重要.然而现有支持物化视图自动选择的方法是静态的,它违背了联机分析处理(OLAP)和决策支持系统(DSS)的动态本质.本文提出了可扩展的动态物化视图方法,通过将整个物化视图选择问题(MVS)分解为三个阶段,降低了问题的复杂度,提高了物化视图的有效性.通过动态调整,物化视图能即时适应查询需求.算法复杂度分析证明了方案的可扩展性.动态调整算法模拟实验验证了方案具有很好的自适应性.  相似文献   

18.
Emerging applications such as personalized portals, enterprise search, and web integration systems often require keyword search over semi-structured views. However, traditional information retrieval techniques are likely to be expensive in this context because they rely on the assumption that the set of documents being searched is materialized. In this paper, we present a system architecture and algorithm that can efficiently evaluate keyword search queries over virtual (unmaterialized) XML views. An interesting aspect of our approach is that it exploits indices present on the base data and thereby avoids materializing large parts of the view that are not relevant to the query results. Another feature of the algorithm is that by solely using indices, we can still score the results of queries over the virtual view, and the resulting scores are the same as if the view was materialized. Our performance evaluation using the INEX data set in the Quark (Bhaskar et al. in Quark: an efficient XQuery full-text implementation. In: SIGMOD, 2006) open-source XML database system indicates that the proposed approach is scalable and efficient.  相似文献   

19.
分组聚集查询已成为数据仓库领域研究的核心问题之一,实视图是提高分组聚集查询性能的有效手段。利用维属性间的层次关系,对一般意义上的实视图重写查询进行了扩展,讨论了单一视图重写查询的限制条件,并给出重写方法,在此基础上,提出了一种利用多个实视图重写查询的优化选择算法,并通过实验表明,该算法进一步提高了分组聚集查询效率。  相似文献   

20.
For speeding up query processing on Big Data, frequent sub-queries or views may be materialized such that the query processing cost is minimized with optimum cost of maintaining the materialized views and/or queries. Materializing frequent sub-queries and views means that resultant data set of the views reside in the memory of one or more nodes in the cluster, so that it reduces the MapReduce cost, submission and scheduling cost of Distributed File System jobs for query processing. We have defined materialized views as resultant data of frequent sub-queries and aggregation functions of a set of Big Data warehousing queries that are saved for enhancing query performance. The problem is defined as a multi-objective optimization problem for minimizing the total query processing MapReduce cost, MapReduce cost for maintaining the materialized views and the number of views selected for materializing with maximized total size of the views selected. We applied Differential Evolution algorithm and NSGA-II to study their performances for developing a recommendation system for selecting views for materializing in Big Data warehousing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号