首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选取典型高灰熔点和低灰熔点煤种,利用X射线衍射仪(XRD)和扫描电镜能谱仪(SEMEDX)对高温气化条件下煤灰熔融行为及其矿物质演变规律进行了实验研究与量子化学计算.结果表明:高温下大量莫来石的生成是导致煤灰试样A具有高灰熔融温度的主要原因;煤灰试样B中由于存在较多的硬石膏、钠长石等低熔融矿物质,且CaO与莫来石反应生成钙长石与钙黄长石的化学反应在煤灰试样B熔融过程中起到了关键作用,从而使其具有低的熔融温度.经量子化学计算分析表明,由于莫来石易与电子接受体结合而难与电子给予体结合,在煤灰熔融过程中,莫来石易与煤灰中常见的碱性阳离子(Ca2+、Mg2+、Fe2+、Na+、K+)电子接受体反应生成其他物质,通过添加不同的阳离子可促使莫来石向不同矿物质转变,可以进一步控制煤灰的熔融变化过程及其熔融温度.  相似文献   

2.
气化条件下混煤灰熔融特性及矿物质演变规律   总被引:2,自引:0,他引:2  
通过实验研究了高温气化条件下混煤灰的熔融特性及矿物质演变规律.结果表明,气化条件下混煤灰熔融温度的变化规律并不与配煤比例成线性关系,而与相应三元相图的液相线温度具有良好的相似性;随着低灰熔点煤灰的加入,混煤灰在三元相图上的位置逐渐由莫来石结晶区向钙长石结晶区移动,并在二元共晶线或三元共晶点附近熔融温度的变化最为显著,且低于周围位置的熔融温度;由于低灰熔点煤灰中含有较多的硬石膏、辉石、长石等矿物,高温气化条件下能分解成CaO、FeO等助熔矿物,这些助熔矿物能够与高灰熔点煤灰中的莫来石、石英等发生反应生成钙长石、铁橄榄石等低熔融矿物,从而降低了高灰熔点煤灰的熔融温度.  相似文献   

3.
气流床气化炉采用液态排渣,高熔点煤灰不能满足排渣要求,煤灰的结渣问题和灰熔融性有很大关系。为研究CaO对煤灰熔融特性的影响规律,在煤灰中添加不同比例的CaO并对灰熔融温度进行测试。使用扫描电镜能谱仪对试样进行元素组成分析和微观形貌观察,使用X-射线粉末衍射仪分析灰样中矿物质变化。结果表明,随着CaO添加比例的增大,煤灰熔融温度先降低后增高。CaO添加比例从0增加到30%时,高温下高熔点的钙长石含量降低,生成大量低熔点的钙铁榴石,灰熔融温度逐渐降低。CaO添加比例继续增加,高熔点的硅钙石含量增多,灰熔融温度逐渐升高。对本研究煤种,CaO添加比例为30%时,降低灰熔融温度效果最好。  相似文献   

4.
选用马弗炉和平面火焰携带流反应器(FF-EFR)开展了神华煤在不同气氛下的灰化实验,利用X射线衍射仪(XRD)、热分析仪(TG/DSC)、扫描电镜(SEM)以及能谱仪(EDS)对收集到的灰样进行表征,探究了神华煤灰熔融性温度低的原因,考察了灰熔点温度和灰分中矿物质成分含量受气氛的影响.结果表明,神华煤灰熔点普遍偏低,主要原因在于煤中存在大量的Ca和Fe,参与反应产生各种低熔点化合物;传统方式测得灰熔点可以代表实际锅炉中燃煤灰熔点,但不能直接表征高氧浓度燃烧反应时灰分实际熔融性特征;不同气氛下主要燃烧产物种类不变,区别在于富氧燃烧时会产生在空气中燃烧时没有的Ca CO3,从而降低富氧条件下灰熔点并加重结渣情况;富氧条件下Fe矿物形态相对空气气氛下玻璃体更多,赤铁矿更少,这些原因导致神华煤在富氧条件下结渣更严重.  相似文献   

5.
选取新疆准东煤田高钠煤(五彩湾煤和天池煤)为研究对象,研究了准东煤中碱金属钠的赋存形态和钠基化合物对煤灰熔融特性影响机制.向低温灰中添加不同比例的Na_2O然后制取其高温混灰,利用X射线衍射仪分析矿物质组分在不同成灰温度下演化规律,探究碱金属钠对准东煤灰熔融特性的影响机制.结果表明:准东煤中钠以水溶钠形式为主;天池煤随着钠含量的增加,灰熔融温度先降低后趋于稳定;五彩湾煤随着钠含量的增加,灰熔融温度先降低后升高.天池煤掺混10%,Na_2O导致灰熔融温度降低,是由于煤灰中白云石、氢氧化钙分解产生大量CaO,碱金属钠促进CaO与煤灰中Si、Al等反应生成含钙钠的低温共熔体,且有低熔点矿物无水芒硝生成;五彩湾煤掺混10%,Na_2O导致灰熔融温度降低,是由于煤灰中新生成低熔点的钙铁辉石和无水芒硝,且碱金属钠促进钙铝黄长石和镁黄长石等含钙矿物质的低温共熔反应,掺混过量Na_2O导致灰熔融温度升高,这是由于煤灰中生成了大量高熔点矿物质.  相似文献   

6.
将神华准东煤(神华煤)和天池能源准东煤(天池煤)与碱沟煤按照不同质量掺混比进行混合并制得灰样,将NaCl、CaO、Al2O3和SiO2按不同添加比例加入神华煤和天池煤并制成灰样,对上述混合灰样的熔融特性进行研究.结果表明:碱沟煤掺混2种准东煤后,随着准东煤质量掺混比的增大,混合灰各个灰熔点特征温度先降低后升高;随着灰样中Na含量增加,准东煤灰样的变形温度显著降低,软化温度、半球温度和流动温度先降低后趋于不变;当灰样中Na含量达到一定比例后,NaCl对准东煤灰熔融特性的影响明显减弱;CaO对准东煤灰熔点的影响较复杂,可以降低也可以提高灰熔点;随着Al2O3添加比例的增加,准东煤灰熔点先升高后急剧降低;随着SiO2添加比例的增加,神华煤灰样的变形温度先升高后降低,而天池煤灰样的变形温度逐步升高,其他3个特征温度均逐渐降低.  相似文献   

7.
使用灰熔点法,分析Al2O3、高岭土、CaO对稻草、麦秸秆与河砂及煤灰混合物的熔融性质的影响,研究结果表明灰熔点法在预测添加剂对生物质灰分与床料熔融粘结改善方面具有较强的适用性。煤灰与两种生物质混合物的灰熔点要高于河砂与两种生物质灰分混合物的灰熔点,麦秸秆与床料混合后的灰熔点要高于相同奈件下稻草与床料混合后的灰熔点,三种添加剂对提高生物质灰与煤灰、河砂混合物的灰熔点结果从高到低依次是Al2O3,高岭土,CaO。  相似文献   

8.
O_2/CO_2富氧燃烧发电技术被认为是未来最具潜力的燃煤低碳电力技术,近年来国内外都得到了快速发展。由于O_2/CO_2富氧燃烧条件下锅炉烟气组份发生了很大变化(以CO_2+H_2O为主),煤灰在富氧燃烧锅炉炉内的沾污、沉积行为也将发生较大变化。为此,在3 MWth煤燃烧热态试验平台上对比研究了煤在空气燃烧和O_2/CO_2富氧燃烧条件下灰的沾污沉积特性。研究结果表明:煤在空气燃烧和O_2/CO_2富氧燃烧条件下各受热面沉积灰样的化学组成并没有显著变化,富氧燃烧条件下沉积灰样中SO_3和Fe_2O_3发生了富集,而Si_2O和Al_2O_3的含量相对偏低,O_2/CO_2富氧燃烧条件下沉积灰样的煤灰熔融温度其在比空气燃烧条件下的煤灰熔融温度约低200℃。  相似文献   

9.
混煤煤质及燃烧特性研究   总被引:1,自引:0,他引:1  
针对混煤的煤质特性和燃烧特性开展实验研究,以指导燃煤电站科学合理的燃用混煤。研究结果表明,混煤的元素分析、工业分析及发热量满足质量加权平均,但混煤的可磨性和灰熔融特性不满足加权平均,低灰熔点煤中掺烧高灰熔点煤能显著提高混煤灰熔点,改善锅炉燃烧过程中的结渣问题,混煤灰熔点变化受到单煤灰成分的影响。热重实验分析表明,混煤的剧烈燃烧阶段与单煤存在明显差异,混煤的燃烧特性介于参与掺混的单煤之间,但不满足线性叠加,其燃烧过程存在着不同程度的交互作用。混煤的着火特性接近于易燃煤,而燃尽特性与难燃煤相近。除此以外,随着氧浓度的降低,混煤的燃烧特性明显变差,易燃煤对氧浓度的变化更加敏感。  相似文献   

10.
针对煤燃烧过程中复杂气氛下灰熔融特性,开发了气氛可控的灰熔融特性测试平台,研究了反应气氛对两种不同Fe含量的煤样灰熔融特性的影响;在不同气氛的高温(1,100,℃)条件下制取灰样,并采用XRD(X射线衍射)分析,获得不同气氛下矿物演变的规律.结果表明,在空气中O_2转化为CO_2的过程中,灰熔点基本不变;在N_2、CO和CO_2体积分数分别为80%,、5%,和15%,的弱还原性气氛时,灰熔点大幅度降低,高铁煤降低更为明显;当气氛的还原性继续增强,灰熔点反而上升.在弱还原性气氛下含Fe矿物被还原,形成了低熔点Fe~(2+)化合物,是弱还原性气氛下灰熔点降低的主要原因,而在强还原性气氛下Fe~(2+)化合物继续被还原为Fe单质,使灰熔点上升.  相似文献   

11.
通过向高灰熔点淮南煤灰中添加不同质量分数的镁基助熔剂,研究镁基助熔剂对高灰熔点煤灰熔融特性的影响及其机理.结果表明:对于淮南煤灰,镁基助熔剂的理想添加质量分数为5%,能使煤灰熔点降低到1 350℃以下;通过XRD分析和SEM验证得知,耐熔矿物质莫来石是导致淮南煤灰熔点较高的原因;Mg2+与莫来石发生反应,生成了堇青石和尖晶橄榄石等易熔矿物质,导致灰熔点降低;通过研究莫来石的稳定性推断出,作为电子给予体的Mg2+易于从活性较大的O(7)和O(13)进入莫来石晶体,造成化学稳定性较弱的Al(1)—O(13)和Al(8)—O(13)共价键的断裂,引起硅酸盐网络中2个Si原子之间的距离增大,促使莫来石晶体晶格重组.  相似文献   

12.
炉内喷钙脱硫技术增加了烟气的飞灰含量和灰中钙的含量,对煤灰的熔融特性有一定影响.在几种动力用煤中添加钙基吸着剂,对灰渣的成分及其熔融特性进行研究,并对添加钙基吸着剂后的灰熔点进行拟合计算,为添加钙基吸着剂后灰熔点的计算提供一种计算方法.结果表明:不同煤种的含硫成分不同,随着Ca/S的不同,煤灰熔融特性变化也不相同.根据20组试验数据,用回归方法拟合出适合添加钙基的灰熔融特性方程,拟合结果显著性高,既充分证明了不同煤的灰熔融特性随添加钙基的变化不同,又可预测添加钙基吸着剂后灰熔点的变化.  相似文献   

13.
垃圾焚烧灰渣的成分分析及其熔融特性   总被引:15,自引:0,他引:15       下载免费PDF全文
在垃圾焚烧余热锅炉中,垃圾灰熔融特性是决定灰沉积危害程度的最重要特性之一。本研究通过测定垃圾灰的成分、灰熔点,系统分析垃圾灰熔融特性与其成分的关系,以及垃圾灰与低熔点煤灰在熔融特性与成分之间的区别,并以此对垃圾燃烧提出一些建议。  相似文献   

14.
文章利用扫描电子显微镜(SEM)、X射线荧光光谱仪(XRF)、X射线荧光衍射仪(XRD)、灰熔融特性分析仪对4种生物质(海草、梨木、榛子壳、稻秆)灰与神木烟煤灰的混合灰的熔融特性进行了研究。研究发现:水生生物质(海草)灰的掺混使混合灰的熔融特性温度先升高再降低;两种木本生物质(梨木和榛子壳)灰的掺混使混合灰的熔融特性温度逐渐升高;草本生物质(稻秆)灰的掺混对混合灰熔融特性温度的影响与水生生物质灰类似。由XRF分析可知:Na2O和CaO对于混合灰的熔融特性温度有更明显的影响,随着混合灰中Na2O含量的逐渐增加,混合灰的熔融特性温度逐渐下降;随着混合灰中CaO含量的逐渐增加,混合灰的熔融特性温度逐渐上升。由XRD结果可知:水生生物质灰在高温下容易形成熔点较低的碱金属硅酸盐,使混合灰的熔点降低;木本生物质灰中的CaCO3含量较高,能够提高混合灰的熔点;草本生物质灰与水生生物质灰类似,含有的低熔点碱金属硅铝酸盐使混合灰的熔点降低。  相似文献   

15.
提出一种利用电容测量生物质灰渣熔融状态的方法,以低熔点的玉米芯灰为样品进行测试,并与X射线荧光分析(XRF)、X射线衍射分析(XRD)、热重-差热分析(TG-DSC)结果进行比较。实验结果表明:玉米芯灰样在600~1000℃加热过程中质量的减少主要由灰分中KCl随加热过程挥发所致,并影响灰熔融温度预测结果;灰样烧结温度为800~900℃,电容测试结果为825℃,TG-DSC测试结果为875℃,灰熔点仪测试结果为990℃。电容测量结果与灰样熔融结渣情况一致,电容变化可准确反映灰样相变情况。与常规灰熔点测试和热重分析相比,该方法可实现实时监控测量,并减小测试过程中碱金属元素受热挥发造成的误差。  相似文献   

16.
利用FactSage软件绘制了煤灰主要组分的三元相图,从热力学角度预测及分析了煤灰熔融性与流动性,表明煤灰液相线温度与灰熔融流动温度间确实存在对应关系。借助FactSage软件模拟计算煤灰熔融过程中生成的矿物质各相态组成,得出煤灰在该温度下的熔融矿物液固比率。对比实验测量值与软件计算值,结果表明当熔融渣中液含率为90wt%时对应的温度值与其灰熔融流动温度值最接近,并且FactSage软件同样也适用于预测高灰熔点煤助熔剂CaO的添加量。  相似文献   

17.
选用高硫长广煤为试验煤种、分析纯 CaO 和 MgO 为添加剂,按照设定的配料方案配制为混合煤粉.依据 GB/T 219-1996煤灰熔融特性测试方法,使用 SE-AF 智能灰熔点测试仪对混合煤粉的灰熔点进行了测量.结果表明:随混合煤粉中 CaO 添加质量分数的逐渐增加,混合煤粉灰熔融特性温度呈现 V 型变化规律;按照联产 Q 相水泥熟料配料方案配制的混合煤粉煤灰的结渣趋势程度属于轻微,较长广煤的结渣趋势程度有所降低.对软化温度下混合煤粉煤灰的矿物组成进行了 XRD 分析,并利用 CaO-Al2O3一SiO2 三元系统相图,进一步分析了混合煤粉熔融特性温度变化机理.结果表明:随着混合煤粉中 CaO 添加质量分数的变化,煤灰矿物组成中不同程度地出现低温共融体是煤灰熔融特性温度变化的原因.  相似文献   

18.
添加剂对煤灰熔融特性的影响   总被引:1,自引:0,他引:1  
在8种煤灰中添加不同矿物质作助熔剂,对煤灰熔融特性进行研究;并用灰色系统方法对8种煤灰的矿物质成分和综合成分与煤灰熔融特性的相关度进行研究,然后对实验方法与灰色系统关联度方法进行比较研究.结果表明:添加剂可以降低煤灰熔融温度,也可以升高煤灰熔融温度,添加剂CaCO3为30%时,F煤和D煤得到最低熔点分别为1 250℃和1 350℃;添加剂硼砂(Na2B4O7·10H2O)为15%时,F煤到最低灰熔点1 150℃,硼砂为20%时,D煤可到熔点1 300℃以下.根据关联度方法可得到:酸性矿物质是影响煤灰熔融温度的主要因素,钠系物质对灰熔融性的关联度比钙系物质影响大,数学方法计算结果与实验结果相吻合.  相似文献   

19.
采用TGA-DSC分析确定了准东煤灰和其混合灰样(不同质量比的准东煤灰和耐火材料)燃烧过程中的特征温度,并分别采用XRD和FSEM-EDS对不同特征温度段灰样进行矿物识别和形貌、能谱分析,得到了原灰与混合灰的烧结温度、灰中主要矿物的转化和熔融过程,并对比了不同耐火材料含量的煤灰熔融温度;在此基础上提出了耐火材料构型的极限热载荷概念评价其耐热性能.研究表明:碳化硅耐火材料降低了准东煤灰的变形温度DT(1130℃降低到1080℃),促进煤灰与耐火材料的烧结形成致密的挂渣保护层;同时灰的烧结会使耐火材料承受极限热载荷能力降低近1/3.1200℃之后,耐火材料中SiC在煤灰的作用下发生氧化,造成材料失效,故在锅炉运行过程中要严格控制挂渣与耐火材料交界面处的温度.耐火材料增加煤灰在高温下的黏度,提高了煤灰的流动温度TF,更加利于煤灰在耐火材料表面形成牢固稳定的熔渣保护层.  相似文献   

20.
以物质平衡为约束条件,采用在弱还原性气氛、温度为T时煤灰中可能存在的化学反应的吉布斯自由能变化之和的最小值min∑ΔGθT作为热力学平衡计算的目标函数,建立高温弱还原性气氛下的煤灰矿物相组成模型.引入各矿物相对应的熔点,构建矿物相组成与灰熔点之间的函数关系并用线性回归的方法确定熔点修正值,进而用迭代法建立了灰熔点预测关系式.结果表明:模型模拟得出的矿物相组成不仅与XRD谱图和Fact Sage谱图有着较好的相似性,而且其变化能反映煤灰熔融特性、预测灰熔点的变化趋势、判断煤灰中主要矿物相组成,灰熔点的预测误差均在-80~80K内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号