首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
《硅酸盐学报》2021,49(7):1263-1277
相比于液态锂电池,固态锂金属电池由于电解质不易燃、不挥发而具有更高的安全性。此外,固态电解质能够有效抑制锂枝晶的生长,使基于高能量密度的锂金属作为负极材料成为可能。但是,固态锂金属电池存在着界面阻抗大、固体电解质/电极兼容性差、电解质离子电导率低及电化学窗口较窄等问题。因此,开发高性能的柔性固体电解质对推动固态锂金属电池的发展起着重要作用。本工作总结了固态锂金属电池中聚合物与不同类型填料复合最新研究进展及复合固体电解质匹配电极材料时存在的界面阻抗大问题与解决策略。  相似文献   

2.
全固态锂电池采用固体电解质取代液态电解质,使其具有更高安全性,且有望进 一步提高电池的能量密度。而在众多固体电解质中,具有石榴石型结构的立方相 Li7La3Zr2O12 (LLZO) 及其元素掺杂产物由于室温离子电导率较高、电化学窗口较宽、与锂金属稳定等优点, 最有可能应用于全固态锂电池中。本文对 LLZO 的物相及晶体结构、制备方法、锂离子电导率 的提升策略以及其所组装的全固态锂电池等方面进行了详细介绍,并预测了 LLZO 固体电解质 材料进一步提升锂离子电导率的潜在可能以及 LLZO 所装配的全固态锂电池的发展方向。  相似文献   

3.
综述了锂/钠离子硫系玻璃或玻璃陶瓷电解质材料的最新研究进展,总结了基于硫系玻璃电解质材料的全固态电池应用中存在的与电极材料界面稳定性、固–固界面接触性以及锂穿刺等关键技术问题,并展望了新型硫系玻璃/玻璃陶瓷电解质材料关键技术研发策略和全固态电池应用探索的发展方向。  相似文献   

4.
《硅酸盐学报》2021,49(8):1585-1599
综述了锂/钠离子硫系玻璃或玻璃陶瓷电解质材料的最新研究进展,总结了基于硫系玻璃电解质材料的全固态电池应用中存在的与电极材料界面稳定性、固–固界面接触性以及锂穿刺等关键技术问题,并展望了新型硫系玻璃/玻璃陶瓷电解质材料关键技术研发策略和全固态电池应用探索的发展方向。  相似文献   

5.
商用锂离子电池由于使用危险和易燃的液体电解质,容易发生火灾和泄漏问题,存在安全隐患。全固态锂离子电池由于其安全性和潜在的高能量密度优势,被认为是下一代能量存储设备。固态聚合物电解质作为全固态锂电池的关键部件,具有良好的不可燃性和对锂金属阳极的适应性,近年来受到广泛关注。但其离子导电性低、力学性能差以及循环寿命不足等限制了其实际应用。根据近年来的研究进展,本文总结了优化固态聚合物电解质性能的方法,包括增加离子电导率,提高电压稳定性、抑制枝晶形成、增加离子选择性和降低界面电阻等,并简要分析了聚合物电解质的现状和发展前景,为固体聚合物电解质基电池的广泛应用奠定了基础。  相似文献   

6.
随着人们对锂电池续航要求不断提高,开发新体系的锂电池成为研究的热点。锂金属电池凭借着较高的比能量,吸引着众多的关注。但是由于存在正极材料克容量和稳定性不足、固态电解质材料界面阻抗大以及锂金属负极膨胀等各方面的限制,导致目前锂金属电池距离大规模应用仍有一段距离。本文从常用的正极材料、锂金属负极材料以及固态电解质材料出发,论证分析了各个材料目前的技术进展,并评估了各个材料的发展前景。  相似文献   

7.
固体电解质是电解质材料的一个重要种类,利用固体电解质组装全固态电池是解决锂离子电池安全性差,能量密度低等问题的有效方法。围绕着几类重要的无机晶态固体电解质,包括:钙钛矿型、钠快离子导体型(NASICON)、锂快离子导体型(LISICON)、硫代–锂快离子导体型(thio-LISICON)、石榴石型,对晶体结构、合成工艺及其与电极材料匹配性能的研究进展进行综述,并着重讨论了无机晶态固体电解质应用于锂离子电池的导电机理以及提高离子电导率的原则与方法。  相似文献   

8.
采用具有优异热、电稳定性的固态电解质取代商用液态电解液,组装全固态锂离子电池被认为是解决电池安全问题的最优方案之一。然而,固态锂电池正负电极与电解质间的固-固界面依然存在接触性差、兼容性差以及离子传输不稳定等关键问题。为加快固态锂电池的研究与开发,分别对固态电池正极-电解质以及负极-电解质界面间的优化策略进行了综述,特别强调了固态电池内部稳定界面的重要性以及对电池性能的影响。  相似文献   

9.
固态锂金属电池具有理论能量密度高、安全性高等优势,是极有前景的下一代储能系统。然而,固体电极与固体电解质之间有限的固–固接触严重阻碍了界面离子的传输。因此,增加外部压力是增加固–固接触及延长电池循环寿命的重要途径。同时,在充放电过程中,电极体积变化产生的内应力也将影响电池界面特性。通过介绍两种基本物理接触模型,结合硫化物、氧化物、聚合物电解质以及金属锂的物理性质,综述了外压和内部应力对电解质、电极及电池的影响。最后,对外压力与内应力在全固态金属锂电池中的作用进行了总结和展望。  相似文献   

10.
锂离子电池电解质多为有机液体,易燃易爆、安全性差。用固态电解质制备的全固态锂离子电池,具有电化学窗口宽、能量密度大和安全性高等优点,是电动汽车和规模化储能应用的理想化学电源。本工作主要介绍了全固态电解质的电解质材料及电极/电解质界面调控与机理问题,为改善固/固界面相容性及降低界面阻抗方面提供解决方案。阐述了目前主流的正负极材料、全固态锂离子电池的设计及目前的专利申请状况,简要讨论了全固态锂离子电池面临的主要问题,并从产业应用角度展望了其应用现状和未来发展趋势,为从业者全面了解全固态电池的发展提供有利依据。  相似文献   

11.
张睿  沈馨  袁洪  程新兵  黄佳琦  张强 《化工学报》2021,72(12):6144-6160
金属锂负极是下一代高比能二次电池备受关注的负极材料,以金属锂为负极的锂金属电池具备极高的理论能量密度,但其仍存在充放电循环效率低、电池寿命短等问题。要实现高能量密度高安全性的锂金属电池的合理设计和优化,需要对金属锂负极中锂金属沉积脱出过程的离子输运、电子输运、界面反应等机制机理有清晰的认识。本文针对金属锂负极中存在的枝晶生长、死锂形成、固体电解质界面膜作用等机理问题,综述了研究者们在其沉脱机理的模型与理论计算、实验研究等方面做出的诸多研究进展,为锂金属电池的合理设计提供了更全面的机理认识。  相似文献   

12.
本文提出了将高离子电导率的全固态电解质Li1.4Al0.4Ti1.6(PO3)4(LATP)用于锂氧电池。用Pechini法成功的合成了全固态电解质,采用X射线荧光衍射(XRD)、场发射扫描电子显微镜(SEM)和电化学性能分析其性能。结果显示,LATP不仅具有较高的离子导电性,而且LATP作为固体电解质,具有更高的放电平台。同时,LATP固体电解质能降低电解质的分解,从而能够减少放电产物的生成。因此,LATP玻璃陶瓷固体用于锂氧电池提高了锂氧电池的热稳定性并且降低了锂氧电池热膨胀。LATP固体电解质利用在可再充电锂氧电池中具有良好的前景。  相似文献   

13.
固态电解质是高安全性、高能量密度的全固态锂电池的核心部件,其典型代表Li7La3Zr2O12(LLZO)具有高离子电导率、高机械强度、高电化学稳定性、低界面阻抗以及对锂金属负极良好的稳定性等优势,是科研人员重点关注的对象之一,但与液态电解质相比,目前LLZO仍存在低离子电导率和与电极固-固界面接触等问题。本文主要简介了LLZO的晶体结构、改性方式等对其离子电导率及界面阻抗的影响,同时对LLZO现存的问题进行了总结,对LLZO的未来发展方向进行了展望,为探索全固态锂电池的实际生产应用提供理论指导。  相似文献   

14.
目前,锂离子电池已经广泛地应用于交通、通讯、便携式电子产品及电动工具等领域。传统的锂离子电池采用液体电解液,存在易挥发、易泄漏、抗冲击性能差等缺点,存在安全隐患。全固态电解质具有热稳定性高、循环寿命长、抗震动性能好等优点,是锂离子电池取代液体电解液的一种理想替代方案。硫化物电解质体系具有离子导电率高、制备简便、电化学窗口宽等优点,已经成为全固态锂离子电池的研究热点。综述了全固态锂电池Li2S-P2S5基电解质的最新研究进展,总结了各种性能改进方法,并对其应用前景做了展望。  相似文献   

15.
固态聚合物电解质具有高安全性、高成膜性和黏弹性等优点,并与电极具有良好的接触性和相容性,是实现高安全性和高能量密度固态Li+电池的重要电解质体系。然而聚合物电解质室温离子电导率较低(10-8~10-6 S·cm-1),不能满足固态聚合物电池在常温运行的需求。因此,在提高离子电导率、机械强度和电化学稳定性等本征属性的基础上,同时探究改善电解质/电极的界面处及电极内部的离子输运是研发固态聚合物Li+电池面临的关键问题。主要从改性聚合物电解质用以提高Li+电池电化学性能的角度出发,综述了凝胶聚合物电解质、全固态聚合物电解质和复合固态电解质中的离子输运机制及其关键参数,总结了近年来聚合物电解质的最新研究进展和未来的发展方向。  相似文献   

16.
《Ceramics International》2023,49(1):443-449
All-solid-state lithium batteries (ASSLBs), which are consisted of Li5.5PS4.5Cl1.5 electrolyte, metal lithium anode and LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode, are speculated as a promising next generation energy storage system. However, the unstable oxide cathode/sulfide-based electrolyte interface and the dendrite formation in sulfide electrolyte using the lithium metal anode hinder severely commercialization of the ASSLBs. In this work, the dendrite formation in sulfide electrolyte is investigated in lithium symmetric cell by varying the stack pressure (3, 6, 12, 24 MPa) during uniaxial pressing, and uniformly nanosized LiAlO2 buffer layer was carefully coated on NCM811 electrode (LiAlO2@NCM811) to improve the cathode/electrolyte interface stability. The result shows that lithium symmetrical cell has a steady voltage evolution over 400 h under 6 MPa stacking pressure, and the assembled LiAlO2@NCM811/Li5.5PS4.5Cl1.5/Li battery under the stack pressure of 6 MPa exhibits large initial discharge specific capacity and excellent cycling stability at 0.05 C and 25 °C. The feasibility of using the lithium metal anode in all-solid-state batteries (ASSBs) under suitable stack pressure combined with uniformly nanosized LiAlO2 buffer layer coated on NCM811 electrode supply a facile and effective measures for constructing ASSLBs with high energy density and high safety.  相似文献   

17.
Lithium metal has a very high theoretical energy density and is one of the most promising anode materials for a new generation of lithium batteries. It is easy to form dendrites during the deposition of lithium metal, which greatly affects the safety and service life of lithium metal batteries. Mechanism of dendrite propagation in lithium metal batteries (LMB) is still to be fundamentally described. Herein, we studied the effects of electrochemical parameters on the behavior of lithium plating at the electrode/electrolyte interface using a tertiary current model by finite-element methods. The results show that dendrite growth is intrinsically influenced by differences in concentration and potential. A higher diffusion coefficient (De) of Li ion in electrolyte is effective to improve uniformity of local concentration and a smaller exchange current density (i0) is essential for reducing sensitivity of interface reaction. Activation polarization is beneficial for uniform plating of lithium. Thus, the polarization curve is extremely important to determine whether lithium deposits uniformly or not. This work results in a new understanding of principles for dendrite growth, and is expected to lead to new insights on strategies for dendrite suppression.  相似文献   

18.
林振康  乔耀璇  王伟  袁洪  樊铖  孙克宁 《化工学报》2020,71(9):4228-4237
金属锂具有极高的理论能量密度,是新一代锂电池中最有潜力的负极材料之一。金属锂沉积时容易形成枝晶,极大影响了锂金属电池的安全性与使用寿命。但由于金属锂性质活泼,缺乏锂电极/电解液界面原位表征方法,锂枝晶生长机制尚不明确。通过有限元方法,基于非线性电极过程动力学,以三次电流模型定量研究了电极/电解液界面行为,并分析不同过程参数对表面电流的影响。结果表明,电极/电解质界面的浓度、电场差异是枝晶生长的主要原因,更大的扩散系数有利于提高界面浓度均匀性,更小的交换电流密度有利于减弱界面反应的敏感性。存在电化学极化区间是均匀沉积的必要条件,电化学极化区间越宽,均匀沉积操作窗口越宽。通过极化曲线可以判断体系是否具有均匀沉积的倾向。加深了对锂电极/电解液界面的电沉积过程的理解,对锂负极保护研究具有指导性意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号