首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 337 毫秒
1.
在保持Zn/Y原子比(1:2)一定的条件下,利用普通铸造法制备了Mg97ZnY2、Mg97.75Zn0.75Y1.5、Mg98.5Zn0.5Y1和Mg99.25Zn0.25Y0.5四种合金,研究了合金元素加入量对该合金系铸态组织和性能的影响。合金元素添加量不会改变合金的物相组成,均主要由α-Mg和Mg12ZnY(LPSO)两相组成。但随合金元素含量降低合金相形态逐渐从网状向孤立颗粒状转变。Mg97.75Zn0.75Y1.5合金的力学性能最佳,与Mg97ZnY2合金相比其抗拉强度和断裂应变分别提高25%和85%。进一步降低合金元素添加量,合金的力学性能降低,断口形貌由韧窝、解理面相结合变为典型的脆断特征。  相似文献   

2.
利用金相显微镜、扫描电镜等研究了Mg94Zn2.5Y2.5Mn1合金正挤压及随后200℃等温时效过程中的组织与力学性能变化。结果表明:Mg94Zn2.5Y2.5Mn1合金挤压过程发生动态再结晶,晶粒明显细化,颗粒状的W(Mg3Zn3Y2)相弥散分布,晶界处X相和晶内的14H相发生了小角度变形扭折;挤压态Mg94Zn2.5Y2.5Mn1合金经时效50 h处理后,可以实现组织均匀化,消除大部分挤压缺陷,抗拉强度高达345 MPa,伸长率为22.5%左右。  相似文献   

3.
利用金相显微镜、扫描电镜等研究了Mg94Zn25Y25Mn1合金正挤压及随后200℃等温时效过程中的组织与力学性能变化。结果表明:Mg94Zn25Y25Mn1合金挤压过程发生动态再结晶,晶粒明显细化,颗粒状的形(Mg3Zn3Y2)相弥散分布,晶界处X相和晶内的14H相发生了小角度变形扭折;挤压态Mg94Zn25Y25Mn1合金经时效50h处理后,可以实现组织均匀化,消除大部分挤压缺陷,抗拉强度高达345MPa,伸长率为22.5%左右。  相似文献   

4.
对比研究了高温轧制制备的Mg-1.02Zn及Mg-0.76Y(质量分数,%)合金在不同温度退火条件下的组织演变及静态再结晶和晶粒长大动力学行为.结果表明,Mg-1Zn合金的轧制组织以剪切带和孪晶为主,在剪切带和孪晶内伴随着动态再结晶;而Mg-1Y合金的轧制组织中只有孪晶,未观察到剪切带和再结晶发生.退火过程中,Mg-1Zn合金静态再结晶过程主要受控于形核过程,而Mg-1Y合金则既受控于形核过程又受控于长大过程.利用经典的JMAK模型和长大模型分别描述了2种合金热轧制后的静态再结晶和晶粒长大动力学过程,结果表明,静态再结晶过程的Avrami因子n值与理想预测值偏离可能来自于再结晶的不均匀形核.固溶稀土Y原子比Zn原子对晶界移动的拖曳作用更强,导致Mg-1Y合金比Mg-1Zn合金晶粒长大因子n’更高.  相似文献   

5.
研究不同稀土Y含量对Mg-6Zn-1Mn合金显微组织和力学性能的影响。结果表明:Y元素的添加对Mg-6Zn-1Mn合金的相结构、组织和力学性能有明显的影响。随着Y含量的增加,合金中的第二相依次从Mg7Zn3相、I相(Mg3YZn6)、I相+W相(Mg3Y2Zn3)到W相+X相(Mg12YZn)转变;热分析和组织观察证明合金相的稳定性趋势为X相W相I相Mg7Zn3相;Mn元素主要以单质颗粒形式弥散分布在基体中;Y的添加能显著提升Mg-Zn-Mn合金的力学性能,其中含6.09%Y的挤压态合金具有最佳的力学性能,其抗拉强度和屈服强度分别达到389 MPa和345 MPa。合金强度的提升主要源于Y元素的晶粒细化、Mn颗粒的弥散强化和Mg-Zn-Y稀土相的引入。  相似文献   

6.
利用光学显微镜、X射线衍射、扫描电镜和差热分析等手段研究添加Ce对Mg-6Zn-1Mn镁合金在不同状态下的微观组织和相组成的影响,并对合金的室温力学性能进行测试和比较。结果表明:添加的Ce元素以Mg12Ce相存在于合金中,主要分布在晶界和枝晶间,铸态晶粒得到细化;添加Ce元素能够明显地提高挤压态Mg-6Zn-1Mn合金的屈服强度和伸长率,这是由于热挤压过程中弥散分布在晶界上的Mg12Ce相能够有效钉扎晶界,抑制再结晶晶粒长大,从而得到更加细小的热变形晶粒组织;然而,添加Ce元素恶化了时效态Mg-6Zn-1Mn合金的力学性能,这是因为热处理不能使这些Mg12Ce相固溶于基体中,在拉伸断裂时Mg12Ce相表面形成微裂纹,导致力学性能下降。  相似文献   

7.
采用多尺度微观组织表征方法研究钪锆微合金化对3102铝合金铸造、时效、热挤压和预变形及退火过程中的微观组织演化以及对挤出圆管力学性能的影响。结果表明:钪锆微合金化促使合金在铸造时发生非均质形核,显著细化合金的铸造组织;含钪锆合金在时效后,组织中析出高密度的纳米级Al_3(Sc_xZr_(1-x))相;析出相不仅抑制了合金在热挤压过程中的再结晶行为,而且在随后的预变形及退火过程中起到抑制再结晶、钉扎晶界和保留纤维组织的作用。添加0.24%Sc和0.23%Zr(质量分数)元素使得挤出圆管屈服强度由26 MPa提升至89 MPa,抗拉强度由70 MPa提升至122 MPa。不含钪锆的3102合金圆管在8%预变形、600℃退火后,组织中出现晶粒异常长大;添加钪锆元素后,组织中的异常长大行为被抑制。钪锆元素增强3102铝合金的再结晶抑阻,提升合金在预变形及退火过程中的组织稳定性。  相似文献   

8.
研究了微量Y和Ca元素对Mg-6Zn-1Al合金的组织和性能影响。结果表明:铸态ZAM610合金由α-Mg、Mg_(51)Zn_(20)相和少量Al_8Mn_5相组成,单独添加Ca使Mg_(51)Zn_(20)相被Mg32(Al,Zn)_(49)相替代,添加Y或Y+Ca,合金由α-Mg、Mg_(51)Zn_(20)、Al_2Y相和少量的Al_(10)Mn_2Y相组成。添加Y或/和Ca,细化了镁合金再结晶晶粒,其中添加Y+Ca组合的细化效果最好。加Ca合金在挤压变形中动态析出MgZn_2相,具有强烈的Zener阻滞作用,形成由细小再结晶晶粒和粗大变形带组成的双模组织。ZAMX6100合金具有最高的强度,其抗拉强度、屈服强度和延伸率,分别为354 MPa、313 MPa和17.3%。加Y合金中Al_2Y相在挤压变形中促进再结晶形核,导致变形带数量减少。微合金化后镁合金力学性能的提高,可归因于动态再结晶晶粒细化、Al_2Y相颗粒形成和动态析出MgZn_2相。合金耐蚀性提高的原因是大量动态析出的MgZn_2相阻碍了腐蚀的连续进行,而稀土Y元素提高了合金基体的耐蚀性能。  相似文献   

9.
采用普通凝固技术制备了含有长周期堆垛有序(long period stacking ordered,LPSO)结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金。通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构。结果表明:Zn/RE原子比为1的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由12.1%增至30.4%;LPSO结构相在高温形成时分割了αMg树枝晶,基体平均晶粒尺寸由50μm降至10μm以下;铸态Mg92Zn4Y4合金的凝固组织为α-Mg固溶体+Mg12Zn Y+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为α-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639W·(m·K)-1。  相似文献   

10.
以Mg6Zn2Y为基础研究了Zn、Y含量的变化对Mg-Zn-Y基合金组织和性能的影响.结果表明铸态下增加1%Zn的合金的组织变得粗大,抗拉强度降低约10%,伸长率降低25%;同时添加1%Zn和1%Y的合金组织明显细化,抗拉强度和伸长率分别提高11%和17%;挤压后由于Y的加入形成了高熔点的化合物相,合金受这些相抑制,没有发生动态再结晶,力学性能因挤压变形得到不同程度的提高,对比分析Mg7Zn3Y合金拥有抗拉强度355 MPa和伸长率4.5%较好的综合性能.  相似文献   

11.
In this present work, Pb was applied in the Mg97Zn1Y2 alloy to improve its microstructure and properties, using conventional casting methods. The microstructure and properties of the Mg97 Zn1 Y2 alloy and Mg97Zn1Y2-x Pb(x=0.6 wt.%, 1.2 wt.% and 1.8 wt.%) alloys were observed by optical microscopy, scanning electron microscopy method and analyzed by X-ray diffraction, hardness and strength measurement and electrochemical testing. After adding Pb to the Mg97Zn1Y2 alloy, a new particle phase Mg_2 Pb was identified along the grain boundaries, and dendrites were refined. In addtion, the hardness of Mg97Zn1Y2-xPb(x=0.6 wt.%, 1.2 wt.% and 1.8 wt.%) alloys was higher than that of the Mg97 Zn1Y2 alloy; with the increase of Pb content, the hardness of the alloy increased first and then decreased, followed by a final slight increase, and reached a maximum of 89.1 HV when the Pb content was 0.6 wt.%. The strength of the alloy increased first and then decreased as the Pb content increased. Moreover, adding a small amount of Pb to the alloy can effectively inhibit corrosion, and Mg97Zn1Y2-0.6 wt.%Pb exhibits the best corrosion resistance ability.  相似文献   

12.
The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic tension-compression deformation tests. The plastic behavior of the extruded alloys with compositions of Mg99.2Zn0.2Y0.6 and Mg89Zn4Y7 (molar fraction, %), which were almost the same compositions of Mg matrix phase and LPSO phase in Mg97Zn1Y2 Mg/LPSO two-phase alloy, respectively, were also prepared. By comparing their mechanical properties, the strengthening mechanisms operating in the Mg97Zn1 Y2 extruded alloy were discussed. Existence of the LPSO-phase strongly enhanced the refinement of Mg matrix grain size during extrusion, which led to a large increment of the strength of alloy. In addition, the LPSO-phases, which were aligned along the extrusion direction in Mg97Zn1Y2 extruded alloy, acted as hardening phases, just like reinforced fibers.  相似文献   

13.
An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure according to hexagonal close packed structure)and long-period stacking(LPS)phase.Tensile tests of Mg97Zn1Y2 alloy in comparison with pure Mg were conducted.The fracture morphologies of the tensile specimens were characterized and the microstructures near fracture surface were observed.The results show that the rolled Mg97Zn1Y2 alloy shows a mixed fracture mode including dimples indicating a ductile fracture pattern and a small fraction of cleavage planes indicating a brittle fracture pattern,which is different from the single brittle fracture of the as-cast alloy.In addition,the plastic deformation is mainly from dislocations induced strain with small strengthening effect during plastic deformation in the as-cast Mg97Zn1Y2 alloy,and the strain hardening rate is similar to that of the as-cast pure magnesium.The deformation mechanism of Mg97Zn1Y2 alloy is different from that of the pure magnesium according to a metallographical observation that whether twins are found or not.The strengthening effect hardly exists in the rolled Mg97Zn1Y2 alloy under the same dislocations induced strain,which is different from that of the as-cast alloy with moderate strengthening effect.  相似文献   

14.
Mg_(97)Zn_1Y_2 alloy has been studied as an elevated temperature creep resistant Mg-based alloy for nearly ten years.While, the strength of the cast Mg_(97)Zn_1Y_2 alloy with long-period stacking(LPS) structure is lower than that of the commercial AZ91 alloy at room temperature.The microstructure evolutions in Mg_(97)Zn_1Y_2(molar fraction,%) alloys with LPS phase,processed by rolling and annealing the as-cast alloy and rapidly solidifying/melt-spinning and age treating at different temperatures respecti...  相似文献   

15.
Texture evolution in rolled Mg–1 wt% Zn and Mg–1 wt% Y binary alloys was analyzed by quasi-in situ electron backscatter diffraction (EBSD) during static recrystallization. Mg–1 wt% Zn and Mg–1 wt% Y alloys exhibited strong basal texture at the initial recrystallization state. After grain growth annealing, the basal texture component {0001} < $11\overline{2}0$ > was increased in Mg–1 wt% Zn alloy and that of Mg–1 wt% Y alloy was decreased to be a random texture. Zn and Y atoms segregated strongly to the recrystallized grain boundaries in Mg–1 wt% Zn alloy and Mg–1 wt% Y alloy, respectively. Thus, Zn and Y elements facilitated the grain boundary movements along contrary directions during grain growth. In Mg–1 wt% Zn alloy, due to the Zn element segregation on grain boundaries, the grains consisted of a strong texture grew more easily because the grain boundary migration tended to move from the orientation close to normal direction to the orientation near to transverse direction or rolling direction. Therefore, after grain growth, the volume fraction of texture component {0001} < $11\overline{2}0$ > was increased by consuming the neighboring grains, leading to a stronger basal texture. On the contrary, in the Mg–1 wt% Y alloy, the Y element segregation caused the opposite direction of grain boundary migration, resulting in a random texture.  相似文献   

16.
本文考察了快速凝固条件下不同含量Li元素添加对长周期有序结构相增强Mg-Gd-Zn合金微观组织和力学性能的影响。结果表明,随着Li元素的添加,铸态合金中Gd、Zn溶质原子在镁基体晶粒中的过饱和度降低、(Mg,Zn)3Gd晶界析出相增加、镁基体晶粒尺寸减小。而固溶处理后,随着Li含量的增加,合金中14H型长周期堆垛有序结构相(LPSO)的形成受到抑制,同时纳米/亚微米(Mg,Zn)3Gd颗粒相大量析出,当Li为7.6at. %时合金中无LPSO形成。经热挤压变形后,合金中块状14H相发生扭着分层开裂、层片状14H相发生不同程度溶解、(Mg,Zn)3Gd相破碎细化、基体发生不同程度再结晶;不加Li的Mg96.5Gd2.5Zn1表现出最佳的力学性能(UTS=325,δ=9.5%),而含Li合金则随Li含量的增加,力学性能逐步下降。合金在不同条件下的组织转变机理及力学行为变化被进行了分析。  相似文献   

17.
The mechanical properties of Mg97Zn1Y2 extruded alloy, composed of Mg matrix phase and a long-period stacking ordered phase, the so-called LPSO phase, with a volume fraction of approximately 24%, were investigated using compression tests at room temperature. The microstructure was varied to a large degree by various heat treatments at high temperatures above 400 °C, and the relationship between the microstructure and mechanical properties was clarified. The plastic behavior of the Mg/LPSO two-phase alloy was compared with that of Mg99.2Zn0.2Y0.6 alloy, composed almost Mg-solid-solution phase, and the strengthening mechanisms at work in the Mg97Zn1Y2 extruded alloy are discussed. The existence of the LPSO phase strongly enhanced the refinement of Mg matrix grains during extrusion, which led to a large increase in yield stress through the Hall–Petch relationship. In addition, the LPSO phases, which were aligned along the direction of extrusion in the Mg97Zn1Y2 extruded alloy, acted as hardening phases, being roughly coordinated with the short-fiber reinforcement mechanism.  相似文献   

18.
The effects of Y on the microstructure and mechanical properties of Mg–6Zn–1Mn alloy were investigated. The results show that the addition of Y has significant effect on the phase composition, microstructure and mechanical properties of Mg–6Zn–1Mn alloy. Varied phases compositions, including Mg7Zn3, I-phase (Mg3YZn6), W-phase (Mg3Y2Zn3) and X-phase (Mg12YZn), are obtained by adjusting the Zn to Y mass ratio. Mn element exists as the fine Mn particles, which are well distributed in the alloy. Thermal analysis and microstructure observation reveal that the phase stability follows the trend of X>W>I>Mg7Zn3. In addition, Y can improve the mechanical properties of Mg–Zn–Mn alloy significantly, and the alloy with Y content of 6.09% has the best mechanical properties. The high strength is mainly due to the strengthening by the grain size refinement, dispersion strengthening by fine Mn particles, and introduction of the Mg–Zn–Y ternary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号