首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

2.
利用热压缩实验研究一种新型的具有优异室温塑性的Mg-4Al-2Sn-Y-Nd镁合金的高温流变行为,变形温度为200~400℃,应变速率为1.5×10-3~7.5 s^-1。结果表明:合金的应变速率敏感因子(m)在不同变形温度下均明显小于AZ31镁合金的m值,因此该合金适合在高应变速率下进行热加工。在真应力-应变曲线基础上,建立Mg-4Al-2Sn-Y-Nd 镁合金高温变形的本构方程,并计算得到合金的应力指数为10.33,表明合金在高温下主要的变形机制为位错攀移机制。同时,利用加工图技术确定合金的最佳高温变形加工窗口,即变形温度在350~400℃之间,应变速率在0.01~0.03 s^-1。  相似文献   

3.
镁合金Mg-Zn-Y-Zr的高温变形及本构方程   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对铸态镁合金Mg-Zn-Y-Zr在变形温度为250~450℃,应变速率为0.001~1s-1条件下的高温压缩变形行为进行研究,利用双曲正弦关系描述了该合金的本构方程。结果表明,Mg-Zn-Y-Zr合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真实应力-应变曲线基础上,建立的Mg-Zn-Y-Zr合金高温变形的本构模型较好地表征了其高温流变特性。  相似文献   

4.
在变形温度为260~410℃、应变速率为0.001~10 s~(-1)条件下,对AZ80镁合金进行热拉伸实验,测试AZ80镁合金的真应力-真应变曲线;依据Arrhenius本构方程形式,确定AZ80镁合金热变形过程的本构关系模型;提出一种新的加工硬化率方法,当加工硬化率函数对应变(ε)求一阶导数后的函数取最小值时所对应的应变值,即为临界应变(εc)。采用新的加工硬化率方法,确定AZ80镁合金在不同变形条件下动态再结晶的临界应变和临界应力;研究热变形工艺参数对临界应变和临界应力的影响规律;确定AZ80镁合金热变形过程中的临界应变、临界应力、稳定应变与Z参数的关系模型。模型计算结果与Sellars模型结果相吻合。  相似文献   

5.
利用Gleeble-1500型热模拟机,在应变速率为0.01~1s-1、变形温度为593~653K的变形条件下,对AZ80A镁合金进行等温压缩试验.结果表明:在较高变形温度或者较低应变速率时,AZ80A镁合金更易发生动态再结晶;根据热模拟试验所得的流动应力曲线确定了AZ80A镁合金的动态再结晶临界条件,并通过动力学分析并建立了该合金的动态再结晶模型,可为该合金组织模拟技术提供理论依据.  相似文献   

6.
利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。  相似文献   

7.
《塑性工程学报》2016,(1):104-111
采用Gleeble-1500对AZ80镁合金进行热压缩实验,研究其在变形温度为573K~723K、应变速率为0.001s~(-1)~1s~(-1)条件下的高温变形特性及动态再结晶行为。根据真实应力-应变曲线,建立了考虑应变影响的双曲正弦本构模型,模型计算的应力值与实验值相对误差为2.52%。利用未再结晶区的真实应力-应变曲线,建立了AZ80镁合金的动态再结晶动力学模型。  相似文献   

8.
采用Gleeble-3500热模拟试验机,在变形温度300℃~420℃、应变速率0.000 5 s-1~0.5 s-1的变形条件下,对铸态AZ80+0.4Ce镁合金进行热压缩试验。试验研究了该合金的高温流动应力变化规律,采用金相显微镜分析了温度、应变速率对微观组织的影响。结果表明:铸态AZ80+0.4Ce镁合金的高温流动应力-应变曲线主要以动态再结晶软化机制为特征,增加变形温度和降低应变速率都会降低材料的流动应力;热压缩温度越高,动态再结晶进行越充分,应变速率越大,动态再结晶晶粒越细。  相似文献   

9.
利用热压缩实验研究一种新型的具有优异室温塑性的Mg-4Al-2Sn-Y-Nd镁合金的高温流变行为,变形温度为200~400°C,应变速率为1.5×10-3~7.5 s-1。结果表明:合金的应变速率敏感因子(m)在不同变形温度下均明显小于AZ31镁合金的m值,因此该合金适合在高应变速率下进行热加工。在真应力-应变曲线基础上,建立Mg-4Al-2Sn-Y-Nd镁合金高温变形的本构方程,并计算得到合金的应力指数为10.33,表明合金在高温下主要的变形机制为位错攀移机制。同时,利用加工图技术确定合金的最佳高温变形加工窗口,即变形温度在350~400°C之间,应变速率在0.01~0.03 s-1。  相似文献   

10.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

11.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

12.
本文采用热压缩试验获得了铸态AZ31B镁合金高温变形时的流变曲线,分析了变形温度和应变速率对流动应力的影响。结果表明:峰值应变随着应变速率增加和温度减小而增大,减小应变速率、适当提高变形温度对材料的动态回复和再结晶是有利的。利用多元回归分析建立了流动应力预测模型,该模型可以描述流动应力的应变敏感性,经验证发现使用其预测流动应力具有较高精度,相关系数高达0.9926,能较好地描述铸态AZ31B镁合金在热变形过程的流动行为。  相似文献   

13.
In hot-compression process, the various factors have obvious effects on the deformation behavior of AZ31 magnesium alloy deformation behavior. To understand the hot-compression constitutive relation thoroughly, the stress-strain behavior of AZ31 magnesium alloy at various strain rates and different deformation temperatures were investigated under maximum strain of 60%. The microstructure of the experimental alloy was studied in the hot-compression procedure. The experimental results show that the relation of peak flow stress, strain rate and temperature can be described by Z parameter which contains Arrheniues item. The strain rate and the deformation temperature are the key parameters affecting deformation activation energy.  相似文献   

14.
在温度1323-1473 K,应变速率0.001-1 s-1的范围内研究了Ti-43Al-4Nb-1.4W-0.6B 合金的热压缩变形行为,其真应力-真应变曲线表明合金在变形过程出现了动态软化行为。依据经过摩擦和温度修正后流变应力的曲线,获得了该合金的本构方程,其中Zener-Holloman指数方程描述了温度和应变速率对变形行为的影响,以此构建五次多项式组来描述应变对材料参数的影响,其预测结果与实验结果相符。同时,建立了该合金的热加工图,并据此加工图预测出该合金合适的加工参数为1343 K和0.02 s-1,且成功地完成了在工业生产条件下对圆柱形试样的锻造。  相似文献   

15.
通过热压缩实验,研究挤压态AZ80镁合金在变形温度为250-450℃,应变速率为0.001-10 s-1条件下的热变形行为。采用经过温升修正的流变应力计算该合金的Zener-Hollomon参数(Z参数)。结果表明,挤压态AZ80镁合金适宜的变形条件为应变速率0.1 s-1、变形温度350-400℃。另外,讨论了显微组织演化与Z参数之间的关系。在高温及低应变速率(低Z参数)时,合金发生了完全再结晶并产生了大的再结晶晶粒。综合考虑加工图和显微组织,变形温度400℃、应变速率0.1 s-1是合金适宜的热变形条件。  相似文献   

16.
采用GW-1200A型控制器配合高温加热炉在WDW-300电子万能试验机上通过等温压缩实验研究了Ti600合金在温度为25?800℃、应变速率为10-4和10-3 s-1条件下的热变形行为,获得了该合金在变形过程中的真应力-真应变曲线,建立了该合金的高温本构关系。结果表明:Ti600合金在较高的温度(600和800℃)下流变应力随应变速率增大而增大,在较低温度(25和300℃)时变化不太明显。在一定的应变率条件下,随着温度升高流变应力降低。考虑到Ti600合金在不同温度下的真应力-真应变曲线随温度变化的发展趋势,建立了修正的井上胜郎高温本构关系,与实验结果对比验证了模型是可靠的。通过扫描电镜(SEM)观察发现,在室温准静态压缩条件下Ti600合金的断裂形式以脆性断裂为主,同时在局部区域出现韧性断裂特征。  相似文献   

17.
AZ91镁合金热挤压变形的力学模型研究   总被引:1,自引:1,他引:0  
在应变速率为0.01~50s-1时、温度为300~450℃条件下,在热压机上对AZ91镁合金的高温热压缩变形特性进行了研究,并通过金相显微镜观察合金热变形过程中的组织变化情况.研究发现,应力、应变曲线随温度的升高而降低,随应变速率的升高而升高.为了消除热电偶测温的滞后性对试样温升的影响,对实测流变应力值进行了修正.在相同应变速率、相同应变下,修正的应力要高于未修正的应力.  相似文献   

18.
通过对AZ80镁合金进行不同变形温度和应变速率的压缩实验,讨论了不同应变速率条件下,变形过程中试样温升对流变应力的影响。结果表明,通过升高变形温度并降低变形速率可使镁合金迅速达到动态再结晶状态,从而有利于镁合金的晶粒细化,为后续制定温变形工艺参数提供理论依据。  相似文献   

19.
AZ80合金初始晶粒对其流变应力影响的研究   总被引:1,自引:0,他引:1  
在Gleeble-3800热模拟机上分别对铸态和预变形态AZ80合金进行了等温压缩,研究了初始晶粒对其流变应力的影响。结果表明,相同条件下,初始晶粒细小的预变形态AZ80合金,其峰值流变应力比铸态合金可降低20%左右,同时变形后的组织也较细密;随着变形量(真实应变)的增大,晶粒尺寸对流变应力的影响减弱。在此基础上,提出了铸态镁合金预变形省力成形方法,为降低镁合金成形力提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号