首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2026铝合金热压缩变形流变应力行为   总被引:5,自引:1,他引:4  
在变形温度为300~450 ℃、应变速率为0.01~10 s-1的条件下,在Gleeble-1500热模拟机上采用圆柱体压缩实验对2026铝合金热变形流变应力行为进行了研究.由试验得出变形过程中的真应力真应变曲线,并利用本构方程对流变应力值进行修正,进而根据修正后的应力值绘制功率耗散图.结果表明:变形过程中的应力值随温度的升高而降低,随应变速率的增大而升高,且修正后的稳态应力值高于未修正值;可用Zener-Hollomon参数的双曲正弦形式来描述2026铝合金热压缩变形时的流变应力行为;高温低应变速率条件下的功率耗散系数最大,该变形区发生了组织转变.  相似文献   

2.
AZ80镁合金的高温热压缩变形行为   总被引:2,自引:0,他引:2  
在应变速率为0.01-50 s^-1、温度为300-450℃的条件下,在Gleeble-3500热模拟机上对AZ80镁合金的高温热压缩变形特性进行研究。实验得出变形过程中的真应力应变曲线,并利用本构方程对流变应力值进行修正,进而利用修正后的应力值得出本实验本构方程中的系列常量;实验还分析温度、应变速率及应变量对微观组织的影响。结果表明:变形过程中的应力值随温度的升高而降低,随应变速率的升高而升高,且修正后的应力值高于未修正值;变形过程中发生动态再结晶且晶粒平均尺寸随变形参数的不同而改变,其自然对数随Zener-Hollomon(Z)参数的自然对数的升高呈线性降低。  相似文献   

3.
AZ31B镁合金热压缩力学行为与本构方程建立   总被引:1,自引:1,他引:0  
根据对铸态AZ31B镁合金在温度为280~440℃、应变速率为0.001~0.1 s-1条件下进行热压缩试验,分析了变形程度、应变速率和加热温度对其流动应力的影响,结果表明,该合金热变形时的流动应力对变形温度和变形速率极为敏感,随变形温度的升高而降低,随变形速率的增加而增大.在温度为440℃,应变速率小于0.01 s-...  相似文献   

4.
赵新 《热加工工艺》2013,42(2):12-14
采用热压缩试验研究了钛合金TC18在700~850℃和应变速率0.001~1 s-1的热变形行为.通过回归分析建立了流变应力与热变形参数相互关系的数学模型.结果表明:在应变速率一定的条件下,流变应力随温度的升高而降低;在变形温度一定的条件下,流变应力随应变速率的升高而升高.  相似文献   

5.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si-Cr合金在变形温度为600~800℃、应变速率为0.01~5 s-1条件下的动态再结晶行为以及组织转变进行了研究,分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化.结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大,材料显微组织强烈受到变形温度的影响.  相似文献   

6.
Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究   总被引:2,自引:4,他引:2  
采用Gleeble-1500热模拟机对Mg-Gd-Y-Mn稀土镁合金在温度为300~500℃、应变速率为0.001~1.0s-1、最大变形程度为60%的条件下,进行恒应变速率高温压缩模拟实验研究.分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化,计算了表观激活能及相应的应力指数,为选择这种合金的热变形加工条件提供了实验依据.结果表明:合金的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低;在给定的变形条件下,计算得出的表观激活能和应力指数分别为200kJ·mol-1和5.1.根据实验分析,合金的热加工宜在400~500℃温度范围内进行.  相似文献   

7.
对LF2铝合金分别在不同应变速率(0.07~0.33 S-1)和不同变形温度(220~480℃)进行高温拉伸试验,研究其热变形流变应力的变化规律.结果表明,流变应力随变形温度的升高而降低;随应变速率的增加而升高,表现出显著的应变强化和温度软化效应;且在高温、高应变速率条件下,材料发生了动态回复和局部动态再结晶.  相似文献   

8.
铸态Mg-7Gd-5Y-1.2Nd—Zr镁合金热变形行为研究   总被引:2,自引:1,他引:1  
针对Mg-7Gd-5Y-1.2Nd-Zr镁合金,研究了其铸态显微组织以及在Gleeble-1500D热模拟机上单向压缩的力学行为,其应变速率为2×10-3~1 s-1,变形温度为573~723 K,压下量为60%.铸态Mg-7Gd-5Y-1.2Nd-Zr合金组织由α-Mg基体和网状的共晶构成;变形温度和应变速率对合金的峰值应力有明显的影响,在相同变形温度条件下,峰值应力随应变速率的增加而升高;在相同的应变速率条件下,峰值应力随变形温度的升高而降低;高温条件下的共晶组织的软化也是合金变形抗力下降的重要原因;应变速率为10-1 s-1 时,合金不连续动态再结晶最为明显,合金易于失效;同时计算出了平均热变形激活能Q为243.5 kJ/mol和应力指数n为4.197 2,分析得出变形激活能直接受到变形温度的影响,间接受到应变速率的影响.  相似文献   

9.
采用Gleebe-1500热模拟机,对Zr-4合金在温度为750~950 ℃、应变速率为5×10-5~50 s-1、最大变形程度为80%的条件下,进行高温压缩热模拟实验研究.在实验基础上,分析了合金高温变形时的变形激活能和应力指数以及流变应力与应变速率、变形温度之间的关系,以经典的双曲正弦式的模型为基础建立了Zr-4合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、变形激活能Q、材料常数lnA以及α、β值.研究结果表明,应变速率和变形温度的变化强烈影响着合金流变应力的大小,流变应力随应变速率提高而增大,随变形温度升高而降低.  相似文献   

10.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

11.
The flow stress of magnesium alloys during hot compression at different temperatures and strain rates was studied by experiments.Materials used were AZ91D alloys in as-cast,homogeneous treatment states,AZ31 and ZK60 alloys in as-cast state. The results show that the thermal simulation curves of different alloys differ from one another at the same deforming condition.The general curves of AZ31 and AZ91D alloys have the character of dynamic recrystallization.There are increase of true stress,drastic fallin...  相似文献   

12.
在温度为400℃~450℃、应变速率为0.01s-1~50s-1变形条件下,研究了AZ80镁合金的塑性变形行为,讨论了变形温度及应变速率对该合金热变形行为的影响,分析了该合金管材等温挤压的有限元模拟。研究发现,AZ80镁合金晶粒大小随温度的升高而增大,随应变速率的升高而减小;在高温变形时,发生连续动态再结晶,再结晶组织相对较均匀;通过调整挤压速度2mm/s~1mm/s,使该合金挤压出口温度维持在400℃~430℃较小范围内波动,从而保证制品的组织性能和尺寸精度的稳定。  相似文献   

13.
采用原位合成法制备了TiCp/AZ91D镁基复合材料,研究了其高温流变行为。结果表明,铸态TiCp/AZ91D镁基复合材料在高温压缩变形过程中存在稳态流变特征,流变应力随着温度的升高和应变速率的降低而降低。在较低温度范围内,TiC颗粒强化效果明显。随着温度的升高,增强相对基体AZ91D镁合金的增强效果逐渐消失。  相似文献   

14.
用热模拟实验机对AZ61镁合金在变形温度为150℃~400℃,应变速率为0.01s-1~10s-1的条件下进行压缩变形,研究不同变形条件下AZ61镁合金的力学响应。结果表明,AZ61镁合金压缩变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且应力峰降低;随变形速率增加,发生再结晶转变的临界应变增大。相比之下,变形温度对AZ61合金力学行为的影响要大于应变速率的影响。  相似文献   

15.
通过对AZ80镁合金进行不同变形温度和应变速率的压缩实验,讨论了不同应变速率条件下,变形过程中试样温升对流变应力的影响。结果表明,通过升高变形温度并降低变形速率可使镁合金迅速达到动态再结晶状态,从而有利于镁合金的晶粒细化,为后续制定温变形工艺参数提供理论依据。  相似文献   

16.
AZ31镁合金热变形流动应力预测模型   总被引:1,自引:0,他引:1  
采用近等温单轴压缩实验获得了AZ3l镁合金变形温度为523 723 K,应变速率为0.01—10 s-1条件下的流动应力,分析了变形温度和应变速率对流动应力的影响规律.结果表明,AZ31镁合金变形过程中发生了动态再结晶,523 K时形成细小组织;而723 K时动态再结晶和长大的晶粒沿径向拉长.考虑实验过程塑性变形功和摩擦功引起的温度升高,在高应变速率条件下采用温度补偿修正了流动应力.在此基础上,建立了基于双曲正弦模型的峰值流动应力和统一本构关系,该模型利用材料参数耦合应变来描述流动应力的应变敏感性,进一步获得了合金热变形过程中流动应力与变形温度、应变速率和应变的定量关系.采用该本构关系模型预测流动应力具有较高的精度,预测值与实测值相关系数为0.976,平均相对误差为5.07%,实验条件范围内预测的流动应力与实验值几乎能保持一致.  相似文献   

17.
AZ91镁合金泡沫材料的制备   总被引:1,自引:0,他引:1  
吕学旺  邱克强  于波  任英磊 《铸造》2007,56(3):242-244
利用NaCl颗粒作为预制型,采用渗流铸造方法制备了AZ91泡沫合金,样品孔隙之间具有良好的连通性。泡沫密度为0.724g/cm3,孔隙率为0.602。压缩试验结果表明,AZ91镁合金泡沫材料的塑性变形能力明显高于铸态AZ91镁合金。在孔隙被压合的过程中,泡沫材料在低应力条件下发生剪切破坏。这一变形机制在金属泡沫材料中尚未见到报道。  相似文献   

18.
脉冲磁场下制备的AZ91D-3Ca合金的半固态压缩力学行为   总被引:1,自引:1,他引:0  
利用Gleeble-1500热模拟机对脉冲磁场下制备的AZ91D-3Ca镁合金的半固态压缩力学行为进行了研究,考察了变形温度和变形速率对半固态压缩流变应力的影响。结果表明,与常规铸造的镁合金试样相比,脉冲磁场下制备的镁合金试样在400℃的高温压缩时并无优势,而在510℃的半固态压缩时具有较低的变形抗力;当其他条件相同时,随着变形温度的升高或变形速率的降低,合金的变形抗力逐渐减小;当应变速率为0.005~0.500s-1和变形温度为510~520℃时,合金的变形抗力在0.38~1.60MPa范围内。  相似文献   

19.
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.  相似文献   

20.
Effect of temperature on mechanical behavior of AZ31 magnesium alloy   总被引:1,自引:0,他引:1  
Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitivity increases with increasingtemperature.Thermally activated slip is the source of strain rate sensitivity.At the temperature below or near 373 K,strain ratesensitivity is very little.Tension/compression asymmetry in yielding decreases with increasing temperature.Twinning is the reasonof tension/compression asymmetry.At the temperature above or near 573 K,the material shows little tension/compressionasymmetry of the flow stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号