首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In order to investigate the effects of pockets in the porthole die on the metal flow, temperature at the die bearing exit and the extrusion load were contrasted with the traditional die design without the pockets in the lower die. Two different multi-hole porthole dies with and without pockets in lower die were designed. And the extrusion process was simulated based on the commercial software DEFORM-3D. The simulation results show that the pockets could be used to effectively adjust the metal flow and especially benefit to the metal flow under the legs. In addition, the maximum temperature at the die bearing and the peak extrusion load decrease, which indicates the possibility of increasing the extrusion speed and productivity.  相似文献   

2.
对于非对称断面、大壁厚且空心的复杂断面空心铝型材,采用常规分流模挤压时很难平衡金属流速,型材挤出后经常产生弯曲或扭拧现象。为此,提出了在常规分流模前增加一级分流模,使传统的分流-焊合-成形的3个阶段变为预分流-分流-焊合-成形的4个阶段,进而达到平衡金属流速目的。研究结果表明:双级分流模比常规分流模挤压时金属流动均匀性得到了改善;各孔金属流速平均值为6.41 mm·s-1,方差为0.2511且降低了65%;挤压温度场分布均匀,温差在7~12℃之间范围内,抵消了温差不均匀的影响;焊合室内静水压力平均值约为290 MPa,模芯周围静水压力分布均匀,模芯不易发生移动。  相似文献   

3.
空心铝型材分流组合挤压模CAD系统开发   总被引:1,自引:1,他引:0  
利用面向对象的设计思想,采用对象模型技术(object modeling technology,OMT)方法,确定了铝型材分流组合挤压模CAD系统的整体构架。用UG/OPEN API接口和UG/OPEN GRIP语言的功能,开发了空心铝型材分流组合挤压模CAD系统。实例证明,利用该系统可以方便地设计出参数化的铝型材分流组合挤压模。用有限体积法模拟铝型材挤压过程,分析金属流动、应力的变化,为优化挤压模结构提供依据。  相似文献   

4.
空心铝型材挤压过程计算机仿真系统   总被引:3,自引:0,他引:3  
试开发了一套基于计算机辅助设计和数值模拟的空心铝型材挤压过程计算机仿真系统,它涵盖了模具工艺设计的全过程,可以集成原有的和新建立的工艺设计知识。该系统包括空心型材挤压模具及坯料的参数化几何造型模块,并能分析分流桥的截面形状、分流孔的布置、焊合室的高度、工作带长度和阻流或者助流结构对金属流速分布的影响,模具的弹性变形对工作带有效长度和模孔尺寸的影响。  相似文献   

5.
To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles, a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian (ALE) algorithm. The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed. To obtain an uniformity of metal flow velocity at the die exit, the porthole die structure was optimized by adding baffle plates. After optimization, maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm, and the concave defects are remarkably improved. The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.  相似文献   

6.
The present communication concerns a detailed analysis of metal flow into a porthole extrusion die to produce a thin-walled square magnesium tube by means of three-dimensional FE simulation in both the transient state and steady state. The research was aimed to get an insight into the longitudinal weld seam formation during extrusion through porthole dies and to evaluate the factors determining the quality of the weld seams. FE simulation revealed distinctive stages at the beginning of an extrusion cycle, corresponding to the changes in extrusion pressure during the process. It showed that the commonly observed defect at the extrudate head was due to entrapped air under the bridges in the upper part of the welding chamber. The dead metal zones existed at the corners between the container and die face and between the bottom and sidewall of the welding chamber. Because of the friction at the die bearing, the metal flow through the die bearing resembled laminar flow. Only the virgin metal from the interior of the billet flowed along the bridges and formed the welding seams. As ram speed increased, the mean stresses and temperatures on the welding plane in the welding chamber increased, which was reflected in the increases in extrusion pressure and extrudate temperature, being beneficial to the solid-state bonding at the weld seams. Tensile tests confirmed that extrusion at a higher ram speed led to enhanced transverse tensile strength and strain of the extruded square tube, as a result of improved bonding at the longitudinal weld seams.  相似文献   

7.
根据铝型材平面分流挤压模的设计原理和结构特点,利用面向对象的设计思想,在系统分析和设计的基础上,捎肙MT(Object Modeling Technology,对象模型技术)方法,确定了铝型材分流组合挤压模CAD系统的整体构架.利用UG/OPEN API接口和UG/OPEN GRIP语言的功能,建立了铝型材分流组合挤压模CAD系统.实例证明,利用该系统,可以方便地设计出参数化的铝型材分流组合挤压模.  相似文献   

8.
This paper describes a numerical analysis of non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. To better assist the design of die and to obtain improvement of productivity, non-steady 3D FE simulation for porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products according to various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.  相似文献   

9.
分流组合模挤压铝合金口琴管的数值模拟   总被引:2,自引:1,他引:1  
采用刚粘塑性有限元法,在DEFORM-3D有限元商业软件上成功实现了铝合金口琴管分流组合模挤压过程的三维数值模拟,获得了分流组合模挤压过程中材料的流动规律,挤压力、应力场、应变场和温度场的分布,以及模具出口处金属流速的分布情况。通过数值模拟发现,型材出口流速不均匀,造成端面不齐,对此,提出了模具修改方案,通过调节模具工作带的长度,实现了型材挤压出口流速均匀的目的,从而保障了型材的产品质量。模拟结果为模具的优化设计及工艺参数的选取提供了理论参考。  相似文献   

10.
提出了一种镁合金管材转角焊合室分流挤压新工艺,该工艺可在有效延长焊合室长度和焊合时间前提下保证舌针刚度,从而保证管材尺寸精度,并且可通过转角剪切变形机制增加预焊合金属变形量和动态再结晶程度,从而有利于提高管材性能和焊缝焊合性能。利用有限元法揭示了转角焊合室分流挤压成形过程中金属的流动特征,应变分布特征和焊合室内的静水压力分布特征。结果表明,整个挤压过程无金属折叠,从而保证管材的表面质量;流经转角后预焊合金属变形量明显增加,有利于提高管材质量和焊缝质量。最后,研究揭示了坯料初始温度,挤压速度和模具转角对焊合室内静水压力的影响规律。结果表明,随着挤压速度的增加和模具转角的增大,转角焊合室内静水压力增大;随着坯料预热温度的增加,转角焊合室内静水压力呈先增大后减小的趋势。  相似文献   

11.
Micro channel tube is a newly developed type of aluminum profiles with sub-millimeter-diameter ports in the cross-section designed for heat transfer enhancement. Micro channel tube is formed with porthole extrusion die, and the longitudinal seam welding problem is the key issue related to both the design of the delicate mandrel in the extrusion die and the pressure bearing capacity of the tube. This paper proposes a novel method to evaluate the seam welding strength of the micro channel tube at the stage of extrusion die design. First, a finite element (FE) simulation of the tube extrusion process is performed for the seam welding conditions in the die chamber and effect of the welding chamber height on hydrostatic pressure. Then, a thermo-mechanical experiment is carried out for a quantitative relationship between the welding strength and the weld condition parameters. Combining this relationship to the numerical results, the welding strength under different die design can be evaluated. Pressure bearing tests on the tube prove the reliability of this evaluation method. This study quantitatively connects the seam welding strength of the profile to the extrusion die parameters, which is helpful for optimizing the design of the extrusion process.  相似文献   

12.
According to the rigid-viscoplasticity finite element method, the porthole die extrusion process of an aluminum harmonica-shaped tube was successfully simulated based on software Deform-3D. The distribution of stress field, effective strain field, velocity field and temperature field during the extrusion process were discussed and the metal flow in welding extrusion was analyzed. The simulation results show that the material flow velocities in the bearing exit are non-uniform with the originally designed die and the forepart of the profile is not neat or even. Aiming at solving this problem, the modification method of die structure was improved. The result shows that the uniform material flow velocities in the die exit and a perfect extruded are obtained by modification bearing length.  相似文献   

13.
为探讨分流组合模挤压成形规律,选择分流孔内斜度、外斜度、焊合室高度和工作带长度为变量设计了9副模具,提出了模具设计的无量纲单指标评价因子和综合评价函数,用DEFORM_3D软件实现了分流组合模挤压铝管材的有限元模拟,获得了挤压材料焊合面上的静水压应力场、等效应变场和模具峰值应力,进而对模具设计评价指标进行了极差分析,得到了最优模具设计,模拟分析结果与试验数据吻合良好。研究表明:分流组合模焊合室高度H与工作带长度L的比值对综合评价函数影响很大,应作为设计变量。  相似文献   

14.
基于刚粘塑性理论,采用Deform-3D有限元软件,对铝型材分流挤压的焊合过程进行了数值模拟.分析了不同分流模模桥结构下焊合面上接触压力、流变应力和速度场的分布及其变化.模拟分析表明,随着模桥下端尺寸d的减小,焊合区域有效焊合路径L增长,静水压力升高,等效应力降低;利用Donati提出的K参数法来判断模桥结构对焊合质量的影响,表明,模桥下端尺寸d越小,分流的金属焊合效果越好.  相似文献   

15.
分流组合模挤压过程数值模拟及模具优化设计   总被引:3,自引:0,他引:3  
文章利用刚粘塑性有限元软件DEFORM-3D对分流组合模挤压小直径薄壁纯铝圆管过程进行了三维有限元模拟,得出了模具焊合室深度以及工作带长度对挤压力、应力应变、模具应力等物理场量的影响规律,从而对模具结构参数进行优化。模拟结果表明,分流模上模应力集中主要分布在分流桥和模芯部位,下模应力集中分布在工作带附近和焊合室圆角过渡区,焊合室深度和工作带长度对产品质量有很大影响。通过试验得知,加大焊合室深度和工作带长度,可提高产品焊缝强度和表面质量。  相似文献   

16.
针对平行流多孔铝管连续挤压成形过程,基于Deform-3D软件平台,通过对挤压模型采取适当的简化措施,实现了挤压过程的三维有限元数值模拟;揭示了金属的变形流动特点,为平面分流组合模的设计提供理论依据,初步得到了模具结构的改进方案。  相似文献   

17.
18.
Boal BV and the University of Twente participate in research projects focused on improvement of die design methods for aluminum extrusion dies. Within this research empirical knowledge is combined with insights gained from numerical process simulations. Design rules for improvements to the geometry and functionality of flat and porthole dies have been defined. For porthole dies this has led to enhanced die stability and significant reduction of scrap. For both flat and porthole dies an increase in production speed and a reduction of wear has been obtained. This paper will describe the scope of this research and present results achieved in industrial practice.  相似文献   

19.
1.IntroductionExtrusiondiesarethemostimportanttoolsinanextrusionprocess.Thedesignandfabricationofextrusiondiesaretheguaranteeforrealizinghighproduction,highqualityofproductsandlowcost.WhenAlhollowsectionsareextruded,theportholediesusedareeasilydamage…  相似文献   

20.
Multi-hole pocket dies are a type of extrusion tooling setup commonly used across the aluminium extrusion industry for efficient production of solid aluminium profiles. Such dies are designed on the basis of experience and corrected after a number of trial extrusion runs before becoming usable. Computer simulation based on the finite element method (FEM) is in principle capable of predicting metal flow through the dies designed, but it is yet a huge technological challenge to simulate the extrusion process to produce profiles of industrial significance. The present research was attempted to investigate the effect of steps in the die pocket on metal flow to produce two chevron profiles with unequal thicknesses through two-hole dies, by means of 3D FEM simulation of extrusion in the transient state. The results showed that the pocket step could be effectively used to balance metal flow. Extrusion experiments validated the predictions of metal flow, extrudate temperature and the pressure required for extrusion through the pocket dies with three different designs. 3D FEM was demonstrated to be a powerful tool in optimising die design and decreasing the number of trial extrusion runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号