首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
本工作对两种不同的2-芳基苯并恶唑化合物溶液荧光被四氯化碳所猝灭的机理进行了详细研究,通过多种途径研究表明该猝灭过程具有光诱导电子转移性质。工作还利用此电子转移所形成的活泼自由基来引发烯类单体的聚合,得到了有一定聚合度的聚甲基丙烯酸甲酯。  相似文献   

2.
本工作对硝酮化合物猝灭-氰蒽荧光的机制进行了研究。发现不同的9-氰蒽/硝酮体系可能经历包括电子转移,能量转移及竞争吸收等不同的猝灭过程,其中α,N-二苯基硝酮对荧光猝灭遵循电子转移机制,分别形成猝灭剂和敏化剂的离子自由基,但硝酮正离子自由不能导致环化反应发生。结果还表明:硝酮化合物的四π电子1,3偶极结构在猝灭过程中起主要作用,因此当光环化反应破环1,3偶极结构生成氧氮丙啶时,即失去其原有的猝灭能  相似文献   

3.
本工作对硝酮化合物猝灭9-氰蒽荧光的机制进行了研究,发现不同的9-氰蒽/硝酮体系可能经历包括电子转移、能量转移及竞争吸收等不同的猝灭过程。其中α,N-二苯基硝酮对荧光猝灭遵循电子转移机制,分别形成猝灭剂和敏化剂的离子自由基,但硝酮正离子自由基不能导致环化反应发生,结果还表明:硝酮化合物的四π电子1,3偶极结构在猝灭过程中起主要作用,因此当光环化反应破环1,3偶极结构生成氧氮丙啶时,即失去其原有的猝灭能力,导致已被猝灭的荧光重新回复。  相似文献   

4.
利用荧光光谱对电致发光器件(OLED)中几种常用化学组分的荧光猝灭和光诱导电子转移问题进行了研究.发现两种常用的空穴传输材料NPB和TPD与常用电子传输材料AlQ3在光的帮助下可发生电子转移、根据荧光猝灭的Stern—Volmer作图和用单光子记数法测得的荧光寿命而计算得到的猝灭速度常数和扩散速度常数相对应,明确地表明这里的猝灭具有电子转移特征、并对所得的结果进行了讨论。  相似文献   

5.
本文用聚四乙二醇柔性链将9-氨基啶和不同取代基的苯甲酸酯连接起来,合成了一类新型二元分子体系。对各体系中9-氨基啶的电子转移荧光猝灭进行了研究,并根据稳态荧光猝灭计算了体系中的荧光猝灭效率和荧光猝灭速率常数。  相似文献   

6.
研究了 3种碘盐对 3种香豆素荧光的猝灭 ,发现猝灭曲线符合Stern Volmer方程 ,并且猝灭过程受扩散控制 .研究证实了猝灭的机理是由于发生了光诱导电子转移 .通过香豆素衍生物 碘盐体系能在光照下引发甲基丙烯酸甲酯单体的聚合进一步证实了这种机理 .尽管香豆素有较强的分子内电荷转移倾向 ,但由于碘盐阳离子很强的拉电子能力 ,它们间还是能发生快速的电子转移 .  相似文献   

7.
本文用聚四乙二醇柔性链将9-氨基吖啶和不同取代基的苯甲酸酯连接起来,合成了一类新型二元分子体系,对各种体系中9-氨基吖啶和电子转移荧光猝灭进行了研究,并根据稳态荧光猝灭计算了体系中的荧光猝灭效率和荧光猝灭速率常数。  相似文献   

8.
研究了3种碘Weng盐对3种香豆素荧光的猝灭,发现猝灭曲线符合Stem Volmer方程并且猝灭过程受扩散控制。研究证实了猝灭的机理是由于发生了光诱导电子转移。通过香豆素衍生物-碘Weng盐体系能在光照下引发甲基丙烯酸甲酯单体的聚合进一步证实了这种机理。尽管香豆素有较强的分子内电荷转移倾向,但由于碘Weng盐阳离子很强的拉电子能力,它们间还是能发生快速的电子转移。  相似文献   

9.
本工作采用激光闪光光解法对香豆素酮类化合物敏化碘鎓盐化合物问题进行了研究。结果表明:碘鎓盐化合物能通过电子转移机理猝灭香豆素酮的激发三重态。工作中还用甲基紫精(PQ~(2+))为模型化物,观察到它也能使香豆素酮的三重态猝灭,同时可看到在位于610nm处的PQ~+生成。这些结果说明,在发生电子转移的反应中香豆素酮是电子给体,按Weller公式的计算结果也表明它们之间可发生电子转移反应。  相似文献   

10.
本文通过研究在不同溶剂中蒈烯对9,10—二腈基蒽(DCA)荧光猝灭的光物理特性及溶剂极性对猝灭速度的影响,温度效应的测定及其在乙腈中双分子猝灭速率常数κ_q值与计算所得自由能的变化(△G)之间的关系符合 RehmWeller关系,证明了菇烯对DCA荧光的猝灭是一个电子转移的动态猝灭过程。  相似文献   

11.
Photoredox pairs consisting of selenocarbocyanine dye cations and phenyltrialkylborate anions were employed as the novel, effective visible-wavelength initiators of the radical polymerization of acrylic monomer. The influence of the sensitizers and electron donor structure on the photopolymerization kinetics of multiacrylate monomer was investigated by photo-DSC. It was found that the polymerization rate and the final conversion degree were dependent on both dye and borate structure. The kinetic studies of the free radical polymerization revealed an increase in the polymerization rate with a decrease of the borate oxidation potentials which was additionally reflected by the linear relationship between the Hammett constant and rate of polymerization. The efficiency of these initiators was discussed on the basis of the free energy change for electron transfer from an excited cyanine dye cation to a borate anion. The ΔGel values were estimated for photoredox pairs containing a series of phenyltrialkylborate anions and one selenocarbocyanine dye cation. The relationship between the rate of polymerization and the free energy of activation for electron transfer reaction gives the dependence predicted by the classical theory of electron transfer. The photoreduction of cyanine phenyltrialkylborate complex was studied using nanosecond laser flash photolysis. The dye triplet was found to be quenched by the electron donors via an electron transfer process. Rate constants (kq) for the quenching of the excited states were high and approached diffusion-controlled limits and were found to depend on the borate structure.  相似文献   

12.
Quenching process and design of the quenching tower in acrylonitrile production in China were studied in order to decrease the polymerization loss of acrylonitrile in the quenching tower. Based on the research of acrylonitrile polymerization in the quenching tower, a new quenching process was proposed to avoid the disadvantages of the original process. Two kinds of internals were installed to improve the performance of the quenching tower. Through a series of air-flow and real-flow model experiments, the new quenching process and new design were showed to be successful in enhancing the mass and heat transfer in the vapor-liquid system and decreasing the loss of acrylonitrile.Industrial application showed satisfactory results of decrease of the acrylonitrile loss in the quenching tower by about 4.5% and increase of the acrylonitrile recovery of the whole plant by more than 4%.  相似文献   

13.
Janina Kabatc  Katarzyna Jurek 《Polymer》2012,53(10):1973-1980
N,N′-diethylthiacarbocyanine iodide (Cy) with two different compounds acting as co-initiators were used in the three-component photoinitiating systems for free radical polymerization of acrylate monomer. The steady state and time-resolved techniques were used to study the fluorescence quenching by co-initiators, as well as laser flash photolysis to investigate an electron transfer process, that occurs in these photoinitiating system (PIS). To investigate the key factors involved with visible-light activated radical polymerizations involving three-component photoinitiators, we used thermodynamic feasibility and kinetic considerations to study photopolymerizations initiated with thiacarbocyanine dye as a photosensitizer. The Rehm–Weller equation was used to verify the thermodynamic feasibility for electron transfer reaction. Experiments show, that the main interaction between the dye and both co-initiators occurs through its excited singlet state. It was concluded, that the key kinetic factors for efficient visible-light activated initiation process are summarized in two ways: (1) to retard back electron transfer and recombination reaction steps and (2) to use a secondary reaction step to consuming dye-based radical and regenerating the original photosensitizer.Basing on the study, it is known that, there are two possible mechanisms of generation of free radicals, which can start polymerization involving photoreducible series mechanism and parallel series mechanism (photoreducible–photooxidizable series mechanism).  相似文献   

14.
Results of the camphorquinone/hindered piperidines, visible-light photoinduced polymerization of triethyleneglycol dimethacrylate are presented. The effectiveness of piperidines as a coinitiator is compared with a few aliphatic amines and aromatic amines. The main objective in this research was to study the mechanism of photoinitiation of polymerization. Reactive radicals that initiate the polymerization are formed by a mechanism of hydrogen atom abstraction by the triplet state of camphorquinone, mediated by photoinduced electron transfer. The different efficiencies of the aliphatic amines and of the aromatic amines affecting photopolymerization are explained on the basis of the different quenching reactivities of the excited states of camphorquinone.  相似文献   

15.
The photoinitiation ability of photoredox pairs composed of a hemicyanine dye cation and different borate anions for the radical polymerization of 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate was investigated. In such a system, the excited dye chromophore is reduced by different tetraorganylborate anions. Upon irradiation at 488 nm, reductive carbon–boron bond cleavage occurs, producing reactive radicals, which start the chain reaction. The efficiency of bond‐breaking processes was found to be dependent on the nature of both the acceptors and the donors. The experimental results show that the photoinitiating ability of the tested photoredox pairs were controlled by both the driving force of the electron‐transfer process between the electron donor and the electron acceptor and the reactivity of the free radical that resulted from the secondary reactions occurring after the photoinduced electron‐transfer process. Using the nanosecond flash photolysis method, we studied the spectral and kinetic characteristics of the triplet state of cyanine dye and determined the rate constants of the triplet quenching by phenyltrialkylborate salts. The results obtained show that the tetramethylammonium phenyl‐tri‐n‐butylborate (TB7) has a faster electron‐transfer rate than the tetramethylammonium n‐butyltriphenylborate (TB2) salt, which bore only one butyl group attached to the boron. The relative initiator efficiency of the triphenylbutylborate salts, as compared to the corresponding phenyltrialkylborate salts with a common chromophore, was determined. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
New symmetrical bicationic polymethine dyes were synthesized and their spectroscopic and electrochemical properties were described. The bichromophoric dyes (benzothiazole, benzoxazole, indolinium derivatives) were investigated as sensitizers in the free radical photopolymerization initiated by their borate salts. The obtained kinetic results shown that bicationic polymethine dyes as the organoborate salts are much efficient photoinitiating systems of acrylate monomers polymerization than monocationic parent dyes. The rate of polymerization depends on ΔGET of electron transfer from borate anion to the excited singlet state of bicationic polymethine dye. The relationship between the rate of polymerization and the free energy of electron transfer process shows the dependence predicted by the classical theory of electron transfer.  相似文献   

17.
A cyclic monomer containing the chloromethyl unit 10-methylene-9,10-dihydroanthryl-9-spiro(4′-chloromethylphenyl)cyclopropane (MDCMS) was polymerized using a controlled radical ring-opening polymerization via a reversible addition-fragmentation chain transfer (RAFT) process to afford a nonconjugated alternate polymer composed of anthracene and chloromethylstyrene (CMS) units. Well-defined random copolymers were obtained through the ring-opening RAFT copolymerization. Various functional groups were incorporated into the alternate polymer. The alternate polymer containing imidazole rings exhibited fluorescence quenching as a result of charge transfer. Fluorescence resonance energy transfer (FRET) was observed in the alternate polymers containing naphthalene and thiophene rings. The random copolymers obtained by copolymerization followed by post-functionalizations exhibited characteristic optoelectronic properties that differed from those of the alternate polymers.  相似文献   

18.
Poly(sodium styrenesulfonate)-functionalized graphene was prepared from graphene oxide, using atom transfer radical polymerization and free radical polymerization. In atom transfer radical polymerization route, the amine-functionalized GO was synthesized through hydroxyl group reaction of GO with 3-amino propyltriethoxysilane. Atom transfer radical polymerization initiator was grafted onto modified GO (GO-NH2) by reaction of 2-bromo-2-methylpropionyl bromide with amine groups, then styrene sulfonate monomers were polymerized on the surface of GO sheets by in situ atom transfer radical polymerization. In free radical polymerization route, the poly(sodium 4-styrenesulfonate) chains were grafted on GO sheets in presence of Azobis-Isobutyronitrile as an initiator and styrene sulfonate monomer in water medium. The resulting modified GO was characterized using range of techniques. Thermal gravimetric analysis, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy results indicated the successful graft of polymer chains on GO sheets. Thermogravimetric analysis showed that the amount of grafted polymer was 22.5 and 31?wt% in the free radical polymerization and atom transfer radical polymerization methods, respectively. The thickness of polymer grafted on GO sheets was 2.1?nm (free radical polymerization method) and 6?nm (atom transfer radical polymerization method) that was measured by atomic force microscopy analysis. X-ray diffractometer and transmission electron microscopy indicated that after grafting of poly(sodium 4-styrenesulfonate), the modified GO sheets still retained isolated and exfoliated, and also the dispersibility was enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号