首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

2.
Aiming at the problem that the location distribution of cluster head nodes filtered by wireless sensor network clustering routing protocol was unbalanced and the data transmission path of forwarding nodes was unreasonable,which would increase the energy consumption of nodes and shorten the network life cycle,a clustering routing protocol based on improved particle swarm optimization algorithm was proposed.In the process of cluster head election,a new fitness function was established by defining the energy factor and position equalization factor of the node,the better candidate cluster head node was evaluated and selected,the position update speed of the candidate cluster head nodes was adjusted by the optimized update learning factor,the local search and speeded up the convergence of the global search was expanded.According to the distance between the forwarding node and the base station,the single-hop or multi-hop transmission mode was adopted,and a multi-hop method was designed based on the minimum spanning tree to select an optimal multi-hop path for the data transmission of the forwarding node.Simulation results show that the clustering routing protocol based on improved particle swarm optimization algorithm can elect cluster head nodes and forwarding nodes with more balanced energy and location,which shortened the communication distance of the network.The energy consumption of nodes is lower and more balanced,effectively extending the network life cycle.  相似文献   

3.
朱明  刘漫丹 《电视技术》2016,40(10):71-76
LEACH协议是无线传感器网络中最流行的分簇路由协议之一.针对LEACH算法簇分布不均匀以及网络能耗不均衡等问题提出了一种高效节能多跳路由算法.在簇建立阶段,新算法根据网络模型计算出最优簇头间距值,调整节点通信半径以控制簇的大小,形成合理网络拓扑结构;在数据传输阶段,簇头与基站之间采用多跳的通信方式,降低了节点能耗.在TinyOS操作系统下,使用nesC语言设计实现了LEACH-EEMH算法.基于TOSSIM平台的仿真结果表明,新算法较LEACH算法在均衡网络能耗、延长网络寿命方面具有显著优势.  相似文献   

4.
无线传感器网络(Wireless Sensor Networks,WSN)的路由协议是无线传感器网络领域中的一个研究热点.针对LEACH协议的不足,提出一种基于自适应t分布改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的改进LEACH协议(LEACH?ISSA),以解决...  相似文献   

5.
无线传感器网络节点能量有限,因此为了避免由于节点的能量不足而造成网络瘫痪,在组网过程中必须要充分考虑到节点能量的情况,Leach协议是其中一种典型的网络分簇路由协议。针对传统leach协议在分簇过程中未能考虑网络内节点能量以及簇首数量的基础上,提出一种新的簇首选取优化算法,旨在达到均衡网络能量、延长网络生命周期的结果。经OPNET仿真表明,该算法能快速选择簇首、节省节点能量以及均衡网络的能量分布,最后有效地延长网络的生命周期。  相似文献   

6.
Clustering technique in wireless sensor networks incorporate proper utilization of the limited energy resources of the deployed sensor nodes with the highest residual energy that can be used to gather data and send the information. However, the problem of unbalanced energy consumption exists in a particular cluster node in the network. Some more powerful nodes act as cluster head to control sensor network operation when the network is organized into heterogeneous clusters. It is important to assume that energy consumption of these cluster head nodes is balanced. Often the network is organized into clusters of equal size where cluster head nodes bear unequal loads. Instead in this paper, we proposed a new protocol low-energy adaptive unequal clustering protocol using Fuzzy c-means in wireless sensor networks (LAUCF), an unequal clustering size model for the organization of network based on Fuzzy c-means (FCM) clustering algorithm, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime. A heuristic comparison between our proposed protocol LAUCF and other different energy-aware protocol including low energy adaptive clustering hierarchy (LEACH) has been carried out. Simulation result shows that our proposed heterogeneous clustering approach using FCM protocol is more effective in prolonging the network lifetime compared with LEACH and other protocol for long run.  相似文献   

7.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

8.
Due to the promising application of collecting information from remote or inaccessible location, wireless sensor networks pose big challenge for data routing to maximize the communication with more energy efficient. Literature presents different cluster-based energy aware routing protocol for maximizing the life time of sensor nodes. Accordingly, an energy efficient clustering mechanism, based on artificial bee colony algorithm and factional calculus is proposed in this paper to maximize the network energy and life time of nodes by optimally selecting cluster-head. The hybrid optimization algorithm called, multi-objective fractional artificial bee colony is developed to control the convergence rate of ABC with the newly designed fitness function which considered three objectives like, energy consumption, distance travelled and delays to minimize the overall objective. The performance of the proposed FABC-based cluster head selection is compared with LEACH, PSO and ABC-based routing using life time, and energy. The results proved that the proposed FABC maximizes the energy as well as life time of nodes as compared with existing protocols.  相似文献   

9.
任克强  余建华  谢斌 《电视技术》2015,39(13):69-72
为了降低无线传感器网络(WSN)的能耗,延长网络的生存周期,提出一种多簇头双工作模式的分簇路由算法.算法对低功耗自适应集簇分层(LEACH)协议作了以下改进:采用多簇头双工作模式来分担单簇头的负荷,以解决单簇头因能耗较大而过早消亡的问题;选举簇头时充分考虑节点位置和节点剩余能量,并应用粒子群优化(PSO)算法优化簇头的选举,以均衡网络内各节点的能耗;建立簇与簇之间的数据传输路由,以减少簇间通信的能耗.仿真结果表明,算法有效降低了网络的能耗,延长了网络的生存周期.  相似文献   

10.
Wireless sensor network consists of sensor nodes with battery operated device. The key challenges in the wireless sensor network are energy consumption and routing optimization. This work presents the cluster based load balancing (CBLB) routing protocol. The proposed routing protocol is used to minimize the energy consumption and increase the routing performance. It avoids the routing robustness, delay and increases the delivery rate and network performance. In existing techniques, different routing protocols such as LEACH, HEED and MESTER were used to increase the network performance and to decrease the energy consumption. But these existing techniques did not satisfy the performance requirements of wireless sensor networks. Hence, there is a requirement to develop a technique that meets the QoS requirements and needs of wireless sensor network. The proposed CBLB routing protocol creates a cluster head in the decentralized network and the cluster head will be used to distribute the workload evenly to the cluster members for reducing the energy consumption in wireless sensor network. Experimental results analyze the performance of the proposed protocol with the different existing protocols. The proposed protocol achieves high throughput, delivery rate and reduces the energy consumption, delay and routing overhead.  相似文献   

11.
In real life scenario for wireless sensor networks (WSNs), energy heterogeneity among the sensor nodes due to uneven terrain, connectivity failure, and packet dropping is a crucial factor that triggered the race for developing robust and reliable routing protocols. Prolonging the time interval before the death of the first sensor node, viz. the stability period, is critical for many applications where the feedback from the WSN must be reliable. Although Low Energy Adaptive Clustering Hierarchy (LEACH) and LEACH-like protocols are fundamental and popular clustering protocols to manage the system’s energy and thus to prolong the lifespan of the network, they assume a near to a perfect energy homogeneous system where a node failure, drainage and re-energizing are typically not considered. More recent protocols like Stable Election Protocol (SEP) considers the reverse, i.e., energy heterogeneity, and properly utilizes the extra energy to guarantee a stable and reliable performance of the network system. While paradigms of computational intelligence such as evolutionary algorithms (EAs) have attracted significant attention in recent years to address various WSN’s challenges such as nodes deployment and localization, data fusion and aggregation, security and routing, they did not (to the best of our knowledge) explore the possibility of maintaining heterogeneous-aware energy consumption to guarantee a reliable and robust routing protocol design. By this, a new protocol named stable-aware evolutionary routing protocol (SAERP), is proposed in this paper to ensure maximum stability and minimum instability periods for both homogeneous/heterogeneous WSNs. SAERP introduces an evolutionary modeling, where the cluster head election probability becomes more efficient, to well maintain balanced energy consumption in both energy homogeneous and heterogeneous settings. The performance of SAERP over simulation for 90 WSNs is evaluated and compared to well known LEACH and SEP protocols. We found that SAERP is more robust and always ensures longer stability period and shorter instability period.  相似文献   

12.
在无线传感器网络中的LEACH协议是一种自适应聚类路由算法.由于LEACH协议存在着无法控制簇首在网络中的分布位置、簇首选择方式限制条件不够等缺点导致能量消耗太大.基于簇头能量限制和双簇头路由方式,对LEACH协议进行了改进,设计了一种降低能耗的双簇头非均匀分簇路由协议.双簇头非均匀分簇路由协议采用NS2进行网络仿真实验,通过仿真结果的分析以及与LEACH协议的对比,证明双簇头非均匀分簇路由协议有效提高了网络能耗的均衡性.  相似文献   

13.
在低功耗自适应分簇(LEACH,Low Energy Adaptive Clustering Hierarch)算法中,由于每一轮循环都要重新构造簇,距离较远的簇头节点可能会因长距离发送数据而过早耗尽自身能量,能量较低的节点当选为簇头节点时将会加速该节点的死亡,影响整个网络的生命周期。针对LEACH算法分簇机制中存在的不足,提出了一种改进的路由算法。仿真结果表明,改进算法通过考虑节点的剩余能量与固定分簇的方法,有效的改善了网络能量均衡,提高了网络生存时间。  相似文献   

14.
无线传感器网络中LEACH协议是一种典型的能有效延长网络生命周期的节能通信协议。因为其优秀的节能效果和其简单的规程得到了广泛的认可。但是LEACH簇头算法存在簇头开销大、簇头没有确定的数量和位置等不足。而在成簇后的稳定阶段,节点通过一跳通信将数据传送给簇头,簇头也通过一跳通信将聚合后的数据传送给基站,这样会造成簇头节点...  相似文献   

15.
多媒体传感器网络面临的主要挑战是在能量受限的情况下传输大量数据。在经典分簇协议LEACH的基础上,提出一种考虑数据量的多媒体传感器网络低能耗分簇协议。在簇头选举阶段,选择剩余能量多和数据量大的节点作为簇头;在成簇阶段,同时考虑节点到簇头的通信距离和节点的数据量让节点加入簇。仿真结果表明,提出的协议能有效提高网络的生命周期。  相似文献   

16.

Wireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.

  相似文献   

17.
无线传感网络(Wireless Sensor Network,WSN)作为一种资源受限的网络,网络中节点的能耗直接影响了网络的性能。因此,均衡网络中的能耗,延长网络的生命周期,成为设计WSN路由算法的重要目标。于是,在LEACH-C协议的基础上提出了一种移动汇聚路由算法。分簇阶段由Sink节点计算最优簇首个数,通过K-means聚类将网络中的节点划分至不同的集群,选择通信成本最低的节点作为各集群的簇首。稳定传输阶段通过移动Sink进行数据采集,针对不同的延迟分别规划Sink节点的移动轨迹。MATLAB仿真结果表明,与LEACH和LEAHC-C算法相比簇首的分布更合理,结合Sink节点的移动策略能有效均衡网络能耗,延长网络的寿命。  相似文献   

18.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

19.
基于节点位置的无线传感器网络分簇路由协议   总被引:1,自引:0,他引:1  
针对LEACH协议生成非均匀簇造成能量损耗的问题,以网络簇头分布最优和降低能量损耗为目的,从选择簇头节点、形成簇、簇间路由等方面做了改进。经过理论分析和仿真实验与LEACH和LEACH-C算法比较,结果表明,该路由协议的设计使各节点较均衡地消耗能量,节点生存时间更长,延长了整个无线传感器网络的生命周期。  相似文献   

20.
The improvement of sensor networks’ lifetime has been a major research challenge in recent years. This is because sensor nodes are battery powered and may be difficult to replace when deployed. Low energy adaptive clustering hierarchical (LEACH) routing protocol was proposed to prolong sensor nodes lifetime by dividing the network into clusters. In each cluster, a cluster head (CH) node receives and aggregates data from other nodes. However, CH nodes in LEACH are randomly elected which leads to a rapid loss of network energy. This energy loss occurs when the CH has a low energy level or when it is far from the BS. LEACH with two level cluster head (LEACH-TLCH) protocol deploys a secondary cluster head (2CH) to relieve the cluster head burden in these circumstances. However, in LEACH-TLCH the optimal distance of CH to base station (BS), and the choicest CH energy level for the 2CH to be deployed for achieving an optimal network lifetime was not considered. After a survey of related literature, we improved on LEACH-TLCH by investigating the conditions set to deploy the 2CH for an optimal network lifetime. Experiments were conducted to indicate how the 2CH impacts on the network at different CH energy levels and (or) CH distance to BS. This, is referred to as factor-based LEACH (FLEACH). Investigations in FLEACH show that as CHs gets farther from the BS, the use of a 2CH extends the network lifetime. Similarly, an increased lifetime also results as the CH energy decreases when the 2CH is deployed. We further propose FLEACH-E which uses a deterministic CH selection with the deployment of 2CH from the outset of network operation. Results show an improved performance over existing state-of-the-art homogeneous routing protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号