首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric pressure glow discharge (APGD) plasma in air has high application value.In this paper,the methods of generating APGD plasma in air are discussed,and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied.It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress.Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field,the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated.Further,through combining electrode structures,a large area of APGD plasma in air is generated.On the other hand,by using the method of increasing the density of initial electrons,millimeter-gap glow discharge in atmospheric pressure air is formed,and a maximum gap distance between electrodes is 8 ram.By using the APGD plasma surface treatment device composed of contact electrodes,the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained.The present paper provides references for the researchers of industrial applications of plasma.  相似文献   

2.
In order to achieve atmospheric pressure diffuse dielectric barrier discharge (DBD) in air, a helical–helical electrode structure with a floating-voltage electrode is proposed in this paper. Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak (< 3×106 Vm−1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical–helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.  相似文献   

3.
The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)nanomaterial Ti3C2Tx(Tx=-F,-O and/or-OH)on regulating the electrical discharge characteristics.The field emission and weak bound state property of Ti3C2Tx can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD.The electron avalanche development for the uneven electrode structure is calculated,and the discharge mode transition is modeled.The comparative analyses of discharge phenomena validate the regulation of Ti3C2Tx on the discharge characteristics of DBD.The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited.The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature.This is the first exploration of Ti3C2Tx on the regulation of electrical discharge characteristics as far as we know.This work proves the feasibility of Ti3C2Tx as a source of seed electrons to form homogeneous DBD,establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma.  相似文献   

4.
Based on the idea that a large number of charged particles can be generated by a high-frequency alternating current(AC)dielectric barrier discharge(DBD),and charged particles can be accelerated directionally by a direct current(DC)electric field,a new type of ionic wind formation method is proposed in this paper.To this end,a carbon fiber spiral electrode serves as the generation electrode and a metal rod electrode as the collection electrode,with AC and DC potentials applied respectively to the generation electrode and the collection electrode to form an AC-DC coupled electric field.Under the action of the coupled electric field,a dielectric barrier discharge is formed on the carbon fiber spiral electrode,and the electrons generated by the discharge move from the generation electrode to the collection electrode in the opposite direction of the electric field vectors.During the movement,energy is transferred to the gas molecules by their colliding with neutral gas molecules,thereby forming a directional gas stream movement,i.e.ionic wind.In the research process,it is verified through electric field simulation analysis and discharge experiment that this method can effectively increase the number of charged particles in the discharge process,and the velocity of the ionic wind is nearly doubled.On this basis,the addition of a third electrode forms a distinct discharge region and an electron acceleration region,which further increases its velocity.The experimental result shows that the ionic wind speed reaches up to 2.98 m s^?1.Thanks to the ability of the electrode structure to generate an atmospheric pressure DBD plasma and form an ionic wind,we can create a noise-free air purification device without resorting to a fan,with this device having good application prospects in the field of air purification.  相似文献   

5.
To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.  相似文献   

6.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

7.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

8.
An atmospheric pressure plasma jet (APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrodepositions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge (DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature (EET) for the three grounded electrode positions.  相似文献   

9.
The generation of a very strong peak current in the first period(PCFP) in a pulse-modulated microwave discharge has been discussed in previous studies. In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model. The computational results show that by increasing the duty cycle or voltage modulation rate(VMR), the discharge eventually becomes fully continuous and PCFP can no longer be observed. In the transition process, the distributions of the electric field, electron energy probability function(EEPF) and plasma density are discussed according to the simulation data, showing different discharge structures. The simulations indicate that many high-energy electrons with electron energy larger than 20 eV and low-energy electrons with electron energy less than 3 eV could be generated in a pulsed microwave discharge, together with a reversal electric field formed in the anode sheath when PCFP occurs. However, only medium-energy electrons could be observed in a fully continuous discharge. Therefore, by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.  相似文献   

10.
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 10~(13) cm~(-3), the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.  相似文献   

11.
To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures–the multi-row line-line and double-helix line-line contact electrodes–were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.  相似文献   

12.
The effects of nitrogen on ozone synthesis are studied in a coaxial cylinder generator with dielectric barrier discharge (DBD) and pack-bed dielectric barrier discharge (PB-DBD). A series of 10 h discharge experiments are conducted adopting a bare stainless electrode and bare copper electrode. Results show that the material of the electrode can affect the ozone synthesis. It is inferred that the ozone zero phenomenon (OZP) may be induced from ozone decomposing by metallic oxide catalysis. Packing dielectric particles can reduce the OZP. Adding a certain amount of nitrogen into the oxygen feed gas can further eliminate the OZP, and increase the ozone concentration significantly, but decreases the maximum energy efficiency of ozone generators. Initial analysis indicates that the optimal proportion of nitrogen addition is inversely related to the average reduced electric field strength in the discharge region.  相似文献   

13.
Application of DBD and DBCD in SO2 Removal   总被引:2,自引:0,他引:2  
The dielectric barrier corona discharge(DBCD) in a wire-cylinder configuration and the dielectric barrier discharge(DBD) in a coaxial cylinder configuration are studied. The discharge current in DBD has a higher pulse amplitude than in DBCD. The dissipated power and the gas-gap voltage are calculated by analyzing the measured Lissajous figure. With the increasing applied voltage, the energy utilization factor for SO2 removal increases in DBCD but decreases in DBD because of the difference in their electric field distribution. Experiments of SO2 removal show that in the absence of NH3 the energy utilization factor can reach 31 g/kWh in DBCD and 39 g/kWh in DBD.  相似文献   

14.
In this study, the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge (DBD) plasma source. The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil. We obtained positive results as insulating oil prevents arc formation, while it improved the supplied power and plasma jet length, and increased radical production. Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol–potassium iodide liquid.  相似文献   

15.
Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi- phase DBD applications.  相似文献   

16.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

17.
In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.  相似文献   

18.
In this paper, a two-dimensional axisymmetric fluid model was established to investigate the influence of nitrogen impurity content on the discharge pattern and the relevant discharge characteristics in an atmosphere pressure helium dielectric barrier discharge (DBD). The results indicated that when the nitrogen content was increased from 1 to 100 ppm, the discharge pattern evolved from a concentric-ring pattern into a uniform pattern, and then returned to the concentricring pattern. In this process, the discharge mode at the current peak moment transformed from glow mode into Townsend mode, and then returned to glow mode. Further analyses revealed that with the increase of impurity level, the rate of Penning ionization at the pre-ionization stage increased at first and decreased afterwards, resulting in a similar evolution pattern of seed electron level. This evolution trend was believed to be resulted from the competition between the N2 partial pressure and the consumption rate of metastable species. Moreover, the discharge uniformity was found positively correlated with the spatial uniformity of seed electron density as well as the seed electron level. The reason for this correlation was explained by the reduction of radial electric field strength and the promotion of seed electron uniformity as pre-ionization level increases. The results obtained in this work may help better understand the pattern formation mechanism of atmospheric helium DBD under the variation of N2 impurity level, thereby providing a possible means of regulating the discharge performance in practical application scenarios.  相似文献   

19.
In this paper, the interactions between two dielectric barrier discharge(DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise.The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.  相似文献   

20.
Nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures were investigated numerically by using a newly proposed plasma kinetic model. The governing equations include the coupled continuity plasma discharge equation, drift-diffusion equation, electron energy equation, Poisson's equation, and the Navier–Stokes equations.Powered electrodes of three different exposures were simulated to understand the effect of surface exposure on plasma discharge and surrounding flow field. Our study showed that the fully exposed powered electrode resulted in earlier reduced electric field breakdown and more intensive discharge characteristics than partially exposed and rounded-exposed ones. Our study also showed that the reduced electric field and heat release concentrated near the right upper tip of the powered electrode. The fully exposed electrode also led to stronger shock wave, higher heating temperature, and larger heated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号