首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
垃圾渗滤液经过常规工艺处理后,COD和TN仍然很高,难以达到排放标准。垃圾渗滤液生化处理出水COD约为1 500 mg/L,TN约为400 mg/L,采用两级Fenton-曝气生物滤池(BAF)组合工艺对垃圾渗滤液生化处理出水进行深度处理。双氧水加药量按照与COD的质量比为1∶1来控制,硫酸亚铁的投加量按照与COD的质量比为2∶1来控制,Fenton反应pH值控制在3左右,单级Fenton的反应时间控制在10 h。BAF脱氮反应的进水碳氮比控制在4∶1左右,单级BAF的停留时间约为2 d。实际工程运行结果表明:该工艺运行稳定,出水水质好,对COD与TN的去除率分别为96%和95%,出水COD和TN分别为60 mg/L和20 mg/L,达到了《生活垃圾填埋场污染控制标准》(GB 16889—2008)的表2标准。  相似文献   

2.
某皮革废水处理站采用EGSB/水解酸化池/三级AO/臭氧接触池/曝气生物滤池(BAF)组合工艺,在废水处理量为4 860 m~3/d,进水COD、BOD5、氨氮、SS、色度、动植物油浓度分别为2 830 mg/L、940 mg/L、35 mg/L、1 460 mg/L、270倍、670 mg/L时,相应指标的总去除率均达到了90%以上,系统出水所有指标远低于《山东省南水北调沿线水污染物综合排放标准》(DB 37/599—2006)一般保护区的标准。该工程直接运行费用为2.343元/m~3。  相似文献   

3.
不同填料对曝气生物滤池除污效果的影响   总被引:2,自引:0,他引:2  
采用臭氧/BAF组合工艺处理制革园区污水处理厂的二级生化出水,考察了不同填料BAF挂膜启动的运行情况,探讨了臭氧投加量为25 mg/L时不同填料BAF稳定运行的除污效果及机理。平行运行3个BAF,其填料分别为活性炭、陶粒、活性炭/陶粒(体积比为1∶1)。在挂膜启动期间,活性炭和混合填料BAF对COD的去除率表现为先下降再上升最后趋于稳定,32 d后出水COD<60 mg/L,而陶粒BAF对COD的去除效果不明显。稳定运行期间,进水COD、色度平均值分别为117 mg/L和112.5倍,活性炭BAF的出水值则降至50 mg/L和6倍,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级B标准。在此期间活性炭、混合填料和陶粒BAF中的生物量分别为30.69、25.87、15.18 nmol/g。  相似文献   

4.
通过在BAF前或后投加不同量的高锰酸钾,考察高锰酸钾对给水BAF/常规工艺处理微污染原水的强化效果,并确定最佳投加点和投加量。结果表明:在给水BAF前投加0.8 mg/L的高锰酸钾时处理效果最佳,对NH3-N、CODMn、锰和藻类的总去除率分别达到了99.4%、70.6%、92.5%和95.7%,相应的砂滤出水平均值分别为0.03 mg/L、1.60 mg/L、0.03 mg/L和33.6×104个/L,满足《生活饮用水卫生标准》(GB 5749—2006)和《饮用净水水质标准》(CJ 94—2005)的要求。  相似文献   

5.
采用O3/BAF和BAF/O3两种组合工艺对石化废水二级出水进行深度处理,探讨了在不同的臭氧投加量下,两种工艺对COD和NH3-N的去除效果,以及处理过程中废水中有机物分子质量分布的变化。结果表明,O3投加量为15 mg/L时,O3/BAF组合工艺对COD的去除率最高为32.8%,此时进、出水COD平均浓度分别为68.82、46.22 mg/L,但最高出水COD浓度50mg/L。而对于BAF/O3组合工艺而言,由于臭氧氧化后置,臭氧投加量越大,对COD的去除率越高,O3投加量20 mg/L时,BAF/O3工艺对COD的去除率要高于O3/BAF工艺,在O3投加量为25 mg/L时出水COD趋于稳定,且低于50 mg/L。SUVA和分子质量分布结果表明,在O3/BAF工艺中O3可以对废水起到预处理作用,使大分子物质转化为小分子物质,提高废水的可生化性,从而增强BAF单元对COD的去除效果。O3/BAF工艺的臭氧投加量为20 mg/L时,对NH3-N的去除效果最好,去除率为35.1%;而BAF/O3工艺对氨氮的去除与臭氧投加量的关系不大,试验过程中在12%左右。由于石化二级出水NH3-N平均在0.4~2.5 mg/L之间,可达到《污水综合排放标准》(GB 8978—1996)中一级标准的限值。从保障最终出水水质的要求来看,BAF/O3工艺更适用于石化二级出水的深度处理。  相似文献   

6.
采用A/O—两级Fenton-BAF工艺对广东某垃圾焚烧发电厂渗滤液处理系统进行改造。调试运行结果表明,采用好氧回流能提高A/O段的处理效果和稳定性。当总回流比为1∶2时,生化出水COD及平均出水氨氮浓度分别约为1 100 mg/L和50 mg/L,去除率均达到95%以上。深度处理中两级Fenton氧化单元双氧水(27.5%)加药量分别为4 mL/L和1 mL/L,硫酸亚铁加药量分别为8 g/L和2 g/L,两级BAF的HRT分别为8 h和5 h时,出水COD<90 mg/L、氨氮<3 mg/L、色度<25倍、SS<15 mg/L,达到广东省地方标准《水污染物排放限值》(DB 44/26—2001)第二时段一级标准。  相似文献   

7.
针对南方地区某校园内受污染的湖泊水,采用曝气生物滤池(BAF)和接触氧化池进行强化处理,在上升流速为4 m/h、气水比为1∶1的条件下,稳定运行期间装填陶粒的曝气生物滤池及装填碳素纤维填料的接触氧化池对COD平均去除率分别为50.0%和21.0%。处理前原水COD为41.0~46.0 mg/L,NH_3-N为0.34~1.04 mg/L,为《地表水环境质量标准》(GB 3838—2002)的Ⅴ类水质,且蓝藻大暴发,影响景观;经4个月的内循环处理,湖水COD降至20.0 mg/L左右,NH_3-N稳定低于0.50 mg/L,COD指标符合《地表水环境质量标准》(GB 3838—2002)的Ⅳ类水标准,NH_3-N达到Ⅱ类水标准,未见蓝藻暴发,水体景观得以良好恢复。  相似文献   

8.
湖州某纺织染整公司在原有废水处理工艺(调节池+初沉池+水解酸化池+A/O池+二沉池+气浮池)基础上,改良二沉池和气浮池,新增磁粉投加装置和除锑药剂投加装置。该工程建成调试后运行稳定,出水pH值为6~9、COD≤200 mg/L、总锑≤0. 1 mg/L,达到《纺织印染工业水污染物排放标准》(GB 4287—2012)。废水直接处理成本为1. 35元/m~3(其中药剂费为1. 30元/m~3,电费为0. 05元/m~3)。  相似文献   

9.
为改善三峡库区水环境质量,合川污水处理厂在提标改造项目完工投用前,对现有Orbal氧化沟工艺的生物脱氮进行了问题诊断及效能提升。水质数据的统计分析结果显示,碳源短缺是限制生物脱氮的重要原因。为此,提出通过调控内回流比和投加外碳源(乙酸钠)来提升生物脱氮效能。结果表明,当内回流比为300%、乙酸钠投加量为2 240 kg/10~4m~3(相当于104 mg/L的COD)时,出水TN浓度可稳定在10 mg/L以下。进一步的生产性试验结果表明,在水温为14℃、进水TN为57. 2~81. 1 mg/L的条件下,控制内回流比为300%、乙酸钠投加量为1 540 kg/10~4m~3,出水TN平均值为14. 4 mg/L,可稳定达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。  相似文献   

10.
采用重介质混凝沉淀(DLCS)/超滤(UF)耦合工艺中试装置处理长江下游原水。DLCS工艺的较优运行参数:重介质絮凝核(DM)粒径为20~45μm、PAFC投加量为12 mg/L、PAM投加量为0.15 mg/L、沉淀池表面负荷率为16.1 m~3/(m~2·h)、混凝沉淀总停留时间为17 min,在该条件下出水浊度和COD_(Mn)均值分别为1.05 NTU和2.12 mg/L,平均去除率分别可达98.05%和39.2%。DLCS/UF耦合工艺出水水质稳定可靠,出水浊度和COD_(Mn)均值分别可达到0.17 NTU和1.74 mg/L,其他出水水质指标优于GB 5749—2006标准。  相似文献   

11.
采用小型曝气生物滤池工艺处理沈抚灌渠内综合废水。研究结果表明,在控制气水比为6∶1、水力负荷为1.5 m3/(m2.h)的最佳反应条件下,BAF对COD、NH3-N和浊度的去除率均达到了90%以上,出水COD≤60 mg/L、NH3-N≤10 mg/L、浊度≤10 NTU,出水各项污染物指标均优于《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级标准。  相似文献   

12.
通过实验室模拟,考察了后置反硝化曝气生物滤池(BAF)工艺对污水厂尾水的脱氮效果,重点研究了外加碳源量和水力负荷对后置反硝化BAF除污效能的影响规律。研究发现,随着外加碳源量的减少(COD/TN值由10降为4),出水COD浓度由51.9 mg/L下降到7.5 mg/L,TN浓度由3.49 mg/L增加到18.11 mg/L,而氨氮浓度变化较小,始终保持在1 mg/L以下;随着进水水力负荷由1.0 m~3/(m~2·h)逐渐增加至2.0 m~3/(m~2·h),出水COD浓度由7.44 mg/L增加到45.31 mg/L,TN由3.46 mg/L增加到17.18 mg/L,而出水氨氮浓度仍无明显变化,保持在较低水平。综合考虑进水水质和出水水质要求,确定后置反硝化BAF工艺的适宜水力负荷≤1.5 m~3/(m~2·h)、外加碳源量为COD/TN值=7,该条件下对COD、氨氮、总氮的去除效果均较好,去除率分别≥77.51%、95%、≥87.32%。  相似文献   

13.
采用前置回流式UBF/BAF组合工艺处理常州科教城生活污水,考察了对COD、TP、NH_3-N的降解效果和生物量在反应器中的分布情况。结果表明:当温度为14.3~23.8℃,p H值为6.5~8.0,水力负荷为0.05~0.50 m~3/(m~2·h),以及进水COD、NH_3-N、TP和浊度分别为261.25~495.04 mg/L、41.94~59.93 mg/L、3.48~4.76 mg/L和42~95 NTU时,出水COD、氨氮浓度能满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,TP能够满足一级B标准。UBF和BAF反应器具有较好截留悬浮物的能力,同时沿水流方向生物膜总量逐级递减。该研究为生活人口较多的园区及地区独立建设污水处理设施提供了工艺和数据支持。  相似文献   

14.
采用微电解/芬顿/厌氧/好氧生物滤池工艺(ME/Fenton/AF/BAF)处理炼油废水,探讨了各工段的工艺参数及工艺整体运行效果。试验得到最佳工艺参数如下:微电解单元的初始pH值为3,Na2SO4投加量为0.05 mol/L;双氧水的投加量为1.5 m L/L;AF/BAF工段的水力停留时间为(2+2)h。在上述工艺条件下,ME/Fenton/AF/BAF工艺连续运行处理炼油废水时对COD、氨氮、油的平均去除率分别为85.2%、85.0%、90.1%。  相似文献   

15.
化学生物絮凝/悬浮床处理低浓污水   总被引:10,自引:3,他引:7  
考察了化学生物絮凝 /悬浮填料床工艺处理低浓度城市污水的效果,并确定了最佳的运行条件。试验结果表明:在PAFC投量为 70mg/L(以Al2O3 计为 9. 7mg/L)、PAM投量为 0. 5mg/L、污泥回流比为 33%左右、悬浮填料床气水比为 2∶1,以及化学生物絮凝池各廊道的DO值分别为 1. 9~3. 2、1. 3 ~2. 5、0. 3 ~1. 5mg/L的条件下,处理COD为 105 ~255mg/L、TP为 1. 56 ~7. 97mg/L、SS为 60~228mg/L、NH3 -N为 8. 33~18. 05mg/L的城市污水时,对COD、TP、SS的去除率分别为 75. 8%、76. 2%和 90. 6%,对NH3 -N的去除率 >85%。出水COD、TP、SS、NH3 -N浓度均满足《污水综合排放标准》(GB8978—1996)的一级标准。  相似文献   

16.
臭氧高级氧化组合技术处理垃圾渗滤液达标   总被引:1,自引:0,他引:1  
分别选取上海某垃圾焚烧厂及填埋场的垃圾渗滤液MBR出水为处理对象,采用臭氧高级氧化(AOP)技术,并结合混凝预处理及生化处理进行小试.结果表明:对于垃圾焚烧厂MBR出水,采用AOP1(O3)/生化/AOP2(O3组合)处理,当总AOP投加量在3~3.5个单位时就可达到COD< 100 mg/L的新排放标准;对于垃圾填埋场MBR出水,采用混凝/AOP(O3/H2O2)处理,当AOP投加量为6个单位时就可达到COD<100 mg/L的排放标准.综合经济性因素,臭氧氧化组合处理工艺[(混凝)/AOP1(O3)/生化/AOP2(O3/H2O2)]为垃圾渗滤液深度处理的最佳方式.  相似文献   

17.
采用多填料复合式UAF/BAF两级工艺处理洗涤剂废水,考察了滤速对洗涤剂废水处理效果的影响。结果显示,当滤速为1. 4 m/h、BAF气水比为2∶1时,UAF对COD、表面活性剂(LAS)、TP的平均去除率分别为54%、27%、12%,BAF对COD、LAS、TP的平均去除率分别达到33. 2%、66. 4%、81. 5%,系统出水COD、LAS、TP的平均浓度分别为56、3. 1、0. 5 mg/L,达到《污水综合排放标准》(GB 8978—1996)的一级标准。UAF提高了废水的可生化性,降低了LAS的毒性,强化了BAF对难降解有机物、LAS和TP的去除效果,解决了洗涤剂废水处理难达标问题。  相似文献   

18.
采用微电解/Fenton法对土霉素废水二级出水进行深度处理。正交和单因素试验结果表明,微电解法的最佳工艺条件:Fe投量为125 g/L、铁炭质量比为1.5∶1、初始pH值为4.0、反应时间为2 h,在进水COD为361~395 mg/L的条件下,处理后出水COD可降至198~207 mg/L,对COD的去除率可达44%以上;采用Fenton法进一步处理微电解出水,其最佳工艺条件:H2O2(浓度为30%)投加量为2 mL/L、初始pH值为3.0、反应时间为60 min,处理后出水COD<120 mg/L,组合工艺对COD的总去除率达到70%以上,满足《发酵类制药工业水污染物排放标准》(GB21903—2008)的要求。  相似文献   

19.
北方某再生水厂原设计规模为0.8×104m~3/d,采用CASS工艺,出水执行《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B标准,需提标至北京市地方标准《城镇污水处理厂水污染物排放标准》(DB 11/890—2012) B标准并扩容至3×104m~3/d。针对占地小、进水浓度高、出水标准高等难点,新建工程(2.5×104m~3/d)采用多段多级A~2/O工艺,提标工程(0.5×104m~3/d)改造原CASS池为A~2/O池,新建与提标工程生物池出水一并接入MBR池,并新增臭氧脱色措施以确保出水指标达标。实际运行数据表明,出水水质稳定达标,在进水水质达到或超过设计值的情况下,出水氨氮、总氮均值分别为0.7 mg/L和11.2 mg/L。该工程在占地仅增加85%的情况下,处理水量提升2.75倍,扩建后吨水占地1 m2/m~3;膜池膜组件曝气采用脉冲曝气方式,能有效节能降耗,并延缓膜污堵。  相似文献   

20.
高硫重油废水属于炼油厂难处理废水,通过某炼油厂废水处理设施运行实践表明,两级A/O+BAF处理工艺可以使出水水质达到《山东省南水北调沿线污染物综合排放标准》(DB37/599—2006)中一般保护区标准,即COD≤60 mg/L、NH3-N≤15 mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号