首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 937 毫秒
1.
求得了带单粗糙峰时变等温线接触弹流润滑问题的完全数值解,分析了单粗糙峰对压力、膜厚的影响。结果表明,单粗糙峰造成接触区对应位置油膜压力剧烈变化而膜厚变薄。讨论了单粗糙峰半波长、速度和载荷参数分别变化时对压力和膜厚的影响,最后比较了时变解和准稳态解。  相似文献   

2.
以弹流润滑理论为基础,利用多重网格法,研究了啮合表面单粗糙峰的存在对摆线针轮时变弹流润滑的影响,并将不同幅值和波长条件下的粗糙解与光滑解进行了比较。结果表明,粗糙峰幅值越大,波长越小,油膜压力越高;随着幅值的增加,在啮合大部分区域,中心油膜值变大,而在啮合的开始和结束阶段的膜厚值要略低于光滑解,波长变化对中心膜厚基本无影响;随着幅值和波长的增加,最小油膜值相应增大,有利于润滑状况的改善。  相似文献   

3.
渐开线直齿轮瞬态微观热弹流润滑分析   总被引:19,自引:0,他引:19  
考虑了瞬态效应、轮齿表面油膜温度场和轮齿表面纵向粗糙度等因素,对渐开线直齿圆柱齿轮的弹流润滑问题进行研究。载荷由双齿或单齿承担,根据实际载荷谱简化的轮齿载荷曲线,利用压力求解的多重网格法和弹性变形求解的多重网格积分法以及温度求解的逐列扫描技术,得到渐开线直齿轮瞬态微观热弹流润滑问题的完全数值解,讨论了轮齿间油膜的厚度、压力、温度沿啮合线的变化规律。数值计算结果表明,齿轮表面纵向粗糙度对轮齿间油膜的压力、膜厚、温升都有较大影响。考虑轮齿表面粗糙度后,油膜压力和温升明显增大,并随压力的增加而影响越来越显著,粗糙峰使油膜压力分布和温度分布产生振荡,轮齿表面的粗糙峰对摩擦因数影响较小,摩擦因数和最高温升在节点两侧最大。  相似文献   

4.
结合摆线针轮传动中啮合点处综合曲率半径、卷吸速度、轮齿载荷随时间变化的特点,利用多重网格技术,得到了摆线针轮时变微观弹流润滑的完全数值解,分别讨论了单独粗糙峰和粗糙谷对弹流润滑的影响,并与其光滑解进行了比较。结果表明,粗糙度的存在,能较大程度影响油膜压力,但对油膜厚度影响轻微;并且粗糙峰和粗糙谷对油膜压力影响有明显的不同表现。  相似文献   

5.
一个表面带单粗糙峰的线接触时变微弹流润滑数值分析   总被引:1,自引:4,他引:1  
通过数值求解研究了一个固体表面的单粗糙峰对两固体形成的线接触时变弹流润滑区压力、膜厚分布曲线的影响。结果表明:粗糙峰的出现,使其对应位置上的压力、膜厚发生急剧变化;粗糙峰的移动,对压力和膜厚的变化、固体表面的凹陷现象以及Hertz接触区的出口颈缩均有不同的影响;另外,压力峰和油膜形状随着粗糙峰幅值和半波长的变化而变化。结果亦表明:准稳态解比时变解过高地估计粗糙峰对压力和膜厚的影响。  相似文献   

6.
基于二维数字滤波法模拟高斯粗糙表面,建立考虑高斯粗糙表面形貌及热效应的角接触球轴承微弹流润滑模型,采用多重网格积分法求解弹性变形,采用Gauss-Seidel及Jacobi迭代法迭代求解压力,采用逐步扫描法求解油膜能量方程,采用渐进网格加密法求解强耦合非线性微弹流润滑方程组。结果表明:当x、y方向自相关长度相同时,随着粗糙表面均方根值的增加,油膜压力及温度明显增加,膜厚显著减小;反之,油膜压力及膜厚在自相关长度较小的方向出现明显的纹理特性,且当纹理特性与润滑油流动方向相同时,油膜温度显著减小。  相似文献   

7.
单粗糙峰对直齿圆柱齿轮热弹流润滑的影响   总被引:2,自引:1,他引:1  
建立了单粗糙峰函数模型,给出了考虑单粗糙峰时的膜厚方程.应用多重网格技术研究了单粗糙峰的幅值和波长对直齿圆柱齿轮热弹流润滑的影响,并将单粗糙峰在不同幅值和波长情况下的中心压力、中心膜厚、最大温升和最小膜厚沿啮合线的变化与光滑解进行了比较.结果表明:单粗糙峰幅值和波长对齿轮热弹流润滑有着不同的影响,其中中心压力和最大温升随幅值的增大而增大,随波长的增大而减小,中心膜厚随幅值的增大而减小,随波长的增大而增大;与光滑解相比,粗糙峰的存在对弹流润滑产生较大的影响,使中心压力变大、中心膜厚变薄、最大温升值变大.  相似文献   

8.
单粗糙峰通过接触区全过程的时变热弹流数值仿真   总被引:1,自引:0,他引:1  
建立了带单粗糙峰的表面滚滑工况的点接触时变热弹流模型,数值模拟了钢与钢接触、快速表面带单粗糙峰通过接触区的全过程。结果表明,接触区内的粗糙峰会引起局部高压,当粗糙峰较高时,润滑膜会变得极薄,这对润滑的可靠性是不利的,而局部压力高峰也会严重降低材料的表面疲劳寿命。  相似文献   

9.
基于GREENWOOD和TRIPP微凸体接触理论,计入温度、弹性变形等影响因素,建立内燃机主轴承的数学模型和实体模型,计算研究其润滑性能与表面粗糙度之间的关系。结果表明,计入表面粗糙度后,由于微凸体接触力相对较小,油膜压力略有增加,油膜温度变化不大,摩擦功没有显著的增加;粗糙表面增大粗糙接触压力,造成轴颈不对中倾斜程度加剧;随着表面粗糙度的增加,油膜压力降低,厚度增加,峰值粗糙接触压力增大。  相似文献   

10.
利用考虑热、磁场、时变和指数率非牛顿效应的雷诺方程,对水基磁流体滑动轴承进行微观弹流润滑分析。对比稳态解与时变解,并探讨速度、载荷对水基磁流体润滑膜压力、膜厚和温度的影响。结果表明:考虑时变效应时水基磁流体的润滑膜的膜厚、压力和温度发生了明显变化,故在实际中不能用稳态解代替时变解;单个粗糙峰的存在,引起了水基磁流体润滑膜的局部最高压力峰和温度峰,由于局部压力峰的存在,使单个粗糙峰被迫压平,膜厚减小;随着速度的增加,水基磁流体润滑膜的压力峰减小,膜厚增大,温度增大;随着载荷的增加,水基磁流体润滑膜的压力峰增大,膜厚减小,温度增大。  相似文献   

11.
The present work deals with a single layer brazed type cBN grinding wheels, which have been developed in-house. Grits were actively brazed on the working surface of the wheels in a regularly distributed pattern so that it could perform grinding without loading. In general, such a wheel produces substantially high transverse roughness. This happens because of its low active grain density. A touch-dressing technique, developed in-house, has been successfully applied on these brazed wheels so that most of the grits did participate and the average roughness could be brought down to an acceptable magnitude. This work investigated the co-relation between the grit size and cumulative depth of dressing required to achieve an acceptable magnitude of transverse roughness. It was found that the required cumulative depth of dressing was dependent on the size of cBN grits. This paper also shows the effect of gradual touch-dressing on improvement of roughness of the surface ground by such new class of recently developed wheels. Experiments were conducted with microcrystalline cBN grits of three different sizes.  相似文献   

12.
The present work deals with a single layer brazed type cBN grinding wheels, which have been developed in-house. Grits were actively brazed on the working surface of the wheels in a regularly distributed pattern so that it could perform grinding without loading. In general, such a wheel produces substantially high transverse roughness. This happens because of its low active grain density. A touch-dressing technique, developed in-house, has been successfully applied on these brazed wheels so that most of the grits did participate and the average roughness could be brought down to an acceptable magnitude. This work investigated the co-relation between the grit size and cumulative depth of dressing required to achieve an acceptable magnitude of transverse roughness. It was found that the required cumulative depth of dressing was dependent on the size of cBN grits. This paper also shows the effect of gradual touch-dressing on improvement of roughness of the surface ground by such new class of recently developed wheels. Experiments were conducted with microcrystalline cBN grits of three different sizes.  相似文献   

13.
Brittle material removal fraction (BRF) is defined as the area fraction of brittle material removed on machined surface. In the present study, a novel theoretical model of BRF was proposed based on indentation profile caused by intersecting of lateral cracks. The proposed model is related to surface roughness and the subsurface damage (SSD) depth of optical glass during precision grinding. To investigate the indentation profile, indentation tests of K9 optical glass were conducted using single random-shape diamond grains. The experimental results indicate that the indentation profile is an exponent function. To verify the proposed BRF model, BRF, surface roughness and SSD depth of K9 optical glasses were investigated by a series of grinding experiments with different cutting depths. The experimental results show that BRF is dependent on surface roughness and SSD depth. The relationship between BRF, surface roughness and SSD depth is in good accordance with the proposed theoretical model. The proposed BRF model is a reasonable approach for estimating surface roughness and SSD depth during precision grinding of optical glass.  相似文献   

14.
In precision machining leading to nano-metric surface finish, selection of the suitable machining parameters is a critical task. To ensure the desired surface quality, one needs to optimally select the machining parametric matrix. Towards this effort, this paper adds another critical parameter in terms of tool overhang. A well-defined set of machining exercises is carried out with different tool overhangs and machining parameters. In this investigation, an attempt has been made to locate the optimum range of tool overhang with minimum tool vibrations. The interaction between tool overhang with other parameters is also thoroughly investigated. Another important focus of this study is to find out the optimum machining parameters for the situations where it is not possible to select an optimum tool overhang. One such situation occurs when a steep concave parabolic surface needs to be fabricated. In this case a large tool overhang has to be selected. Power spectral density distribution analysis of surface roughness for different tool overhangs is performed to find out significant parameters and their degree of contribution to surface roughness. Analysis of variance is also applied to ascertain statistically significant factors contributing to surface roughness. To model the surface roughness, response surface methodology is being used. The model has been verified by conducting a series of experiments and a steep concave parabolic surface is developed by following the predictions of the developed model.  相似文献   

15.
A theoretical flow model has been developed to describe accurately a fully developed velocity profile of a gas flow in pipe lines with wall roughness as parameter. The model applies the Colebrook and White skin friction correlation which has been adjusted based on experimental data from Princeton SuperPipe facilities. This has resulted in a flow profile model in line with the latest views. The model has shown a significant flow profile variation for wall roughness changes. An ultrasonic ray propagation model of a single path meter has been developed to study the influence of the mentioned flow profile variations on ultrasonic meters. The model has been applied for various cases with different Reynolds number and wall roughness. The results of the study confirm field data that ultrasonic meters are affected by wall roughness changes. To quantify the effect for multipath ultrasonic meters the flow meter algorithm and path position is required.  相似文献   

16.
用飞切法加工光学晶体平面镜   总被引:2,自引:0,他引:2  
从单晶锗光学晶体结构入手,深入分析了光学晶体材料切屑切除与晶体结构方位的关系,确定了材料产生剪切滑移的最佳晶向,据此提出了在这些晶向上对单晶锗进行飞切加工的新工艺,从而有效地消除了已加工表面断裂破坏区,获得了表面粗糙度0.007~0.009μm均匀一致的光滑表面.  相似文献   

17.
工程陶瓷通常采用的加工方法是磨削,磨削表面粗糙度对零件使用性能具有很大的影响。由于客观条件的限制,磨削时各参数如何选择能获得低的表面粗糙度仍然是现今许多学者研究的方向。本文根据单颗磨粒的轨迹模型,利用Matlab软件模拟出不同磨削参数下工件表面的粗糙度情况,为不同磨削参数下获得表面的粗糙度情况模拟提供了一种新方法。  相似文献   

18.
J. Gerth  U. Wiklund 《Wear》2009,267(12):2257-2268
Gear hobbing is a widely used method in industrial gear manufacturing. The most common type of hob is made of homogenous HSS and protected by a PVD coating. In order to increase the reliability and tool life of these milling tools, further developments of the tool surfaces and cutting edges are necessary.A single tooth milling test, using a HSS insert in a conventional milling machine, has been developed with the aim to reproduce the wear mechanisms seen on real HSS gear hobbing teeth. The benefits of such a test, compared to actual gear hobbing tests, are primarily accessibility and reduced costs for both design and production of test specimens (inserts).The main goal of this study was to verify that the wear mechanisms in the developed test correspond with the wear mechanisms obtained in real gear hobbing. Once this was verified, the influence of surfaces roughness on the performance of TiAlN coated HSS inserts was evaluated by using the tool as delivered or after polishing the tool surfaces. Parameters considered were tool wear, cutting forces and the quality of machined surfaces. The polished inserts, yielded less adhered work material and reduced flank wear but no significant difference in cutting forces as compared to the unpolished inserts.  相似文献   

19.
There is a strong desire in industry to improve surface finish when performing ultra-precision, single point diamond turning (SPDT) to reduce the amount of post process polishing required to meet final product specifications. However there are well known factors in SPDT which limit achievable surface finish. This paper focuses on the role of material microstructure, including grain boundary density and the presence of inclusions, as well as tool design on surface roughness using the concept of size effect. Size effect can be described as an interplay between the material microstructure dimension and the relative size of the uncut chip thickness with respect to the cutting edge radius. Since one of the controllable parameters in size effect is grain size and dislocation density, controlled studies were performed on samples whose microstructure was refined by mechanical strain hardening through rolling and a friction stir process (FSP). The use of the ultra-fine grained workpiece prepared using an FSP was observed to reduce side flow as well as grain boundary and inclusion induced roughness. The role of tool geometry on material induced roughness was investigated using a tool with a rounded primary cutting edge and a flat secondary edge. The use of the flat secondary edge was observed to improve surface finish when machining a flat surface. This improvement was primarily attributed to a reduction in side flow and material microstructural effects. By combining these approaches an average surface roughness Ra value of 0.685 nm was achieved when SPDT a flat surface. Furthermore the custom tool has the potential to significantly improve the productivity of SPDT by allowing for a much higher feed rate while still achieving a high quality surface finish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号