首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The inhibitory activity of some o-substituted anilines on iron corrosion in hydrochloric acid (HCl) was studied in relation to inhibitor concentration using potentiodynamic and electrochemical impedance spectroscopy (EIS) measurements. O-substituted anilines were found to act as mixed type inhibitors. The results showed that o-substituted anilines suppressed both cathodic and anodic processes of iron corrosion in 1 M HCl by its adsorption on the iron surface according to Langmuir adsorption isotherm. Potentiodynamic and EIS measurements reveal that these compounds inhibit the iron corrosion in 1 M HCl and that the efficiency increases with increasing of the inhibitor concentration. Data obtained from EIS are analyzed to model the corrosion inhibition process through equivalent circuit.  相似文献   

2.
K.F. Khaled 《Electrochimica acta》2003,48(17):2493-2503
The inhibitive action of some benzimidazole derivatives namely 2-aminobenzimidazole (AB), 2-(2-pyridyl)benzimidazole (PB), 2-aminomethylbenzimidazole (MB), 2-hydroxybenzimidazole (HB) and benzimidazole (B), against the corrosion of iron (99.9999%) in solutions of hydrochloric acid has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). At inhibitor concentration range (10−3-10−2 M) in 1 M acid, the results showed that these compounds suppressed both cathodic and anodic processes of iron corrosion in 1 M HCl by adsorption on the iron surface according to Langmuir adsorption isotherm. The efficiency of these inhibitors increases in the order AB>PB>MB>HB>B. Both potentiodynamic and EIS measurements reveal that these compounds inhibit the iron corrosion in 1 M HCl and that the efficiency increases with increasing of the inhibitor concentration. Data obtained from EIS were analyzed to model the corrosion inhibition process through equivalent circuit. A correlation between the highest occupied molecular orbital EHOMO and inhibition efficiencies was sought.  相似文献   

3.
Weight-loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements were used to study the inhibition of 304 stainless steel corrosion in 1 M H2SO4 at 50 °C by propargyltriphenylphosphonium bromide (PgTPhPBr). The inhibiting effects of propyltriphenylphosphonium bromide (PrTPhPBr) and propargyl alcohol (PA) were also studied for the sake of comparison. For the investigated compounds, Tafel extrapolation in the cathodic region gave a corrosion inhibition efficiency of 98% at 1 × 10–3 M. Adsorption of both PgTPhPBr and PA was found to follow Frumkin's isotherm while adsorption of PrTPhPBr obeys that of Temkin. In the anodic domain, PgTPhPBr acted as a good passivator. The impedance spectra recorded at the corrosion potential (E cor) revealed that the charge transfer process in the inhibited and uninhibited states controls corrosion of 304 stainless steel.  相似文献   

4.
The inhibition of pure iron in 1 M HCl by new synthesised pyridazine compounds has been studied by weight loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. The results obtained reveal that these compounds are efficient inhibitors. The inhibition efficiency increases with the increase of inhibitor concentration and reached 98% at 10−4 M for 5-benzyl-6-methyl pyridazine-3-thione. Potentiodynamic polarisation studies clearly reveal that the presence of pyridazines does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. The temperature effect on the corrosion behaviour of pure iron in 1 M HCl without and with the pyridazines at 10−4 M was studied in the temperature range from 298 to 353 K. EIS measurements show that the increase of the transfer resistance with the inhibitor concentration.  相似文献   

5.
The effect of cysteine (RSH), methionine (CH3SR), cystine (RSSR) and N-acetylcysteine (ACC) on the corrosion behavior of mild steel in 40% H3PO4 solution without and with Cl, F, Fe3‰+ and their ternary mixture was studied using both potentiostatic and electrochemical impedance (EIS) techniques under anodic and cathodic polarization conditions. The inorganic additives stimulate the overall corrosion reaction while the amino acids inhibit it with a predominant effect on the dissolution of iron. Both RSH and ACC are adsorbed according to Temkin’s isotherm while adsorption of RSSR and CH3SR follows Frumkin and Langmuir isotherms respectively. The standard free energy of adsorption (ΔG ) was found to be in the order: RSSR > RSH ≅ ACC > CH3SR. The binary mixtures of Cl or F with RSH or CH3SR are the best inhibitors (IE > 90%) while those containing ferric ions or blend I and amino acids are not good corrosion inhibitors. EIS measurements showed that the cathodic reaction, hydrogen evolution, is charge transfer controlled while the anodic one, iron dissolution, is a complex process.  相似文献   

6.
This article describes a study of the behavior of a mixture of amines and amides, commercially known as Dodigen 213-N (D-213 N), as a corrosion inhibitor for ASTM 1010 mild steel in 10% w/w HCl solution. The concentration range used was 1 × 10−5 M to 8 × 10−4 M. The weight loss and electrochemical techniques used were corrosion potential measurement, anodic and cathodic polarization curves, and electrochemical impedance spectroscopy (EIS). The solution temperature was 50 ± 1 °C and it was naturally aerated. The corrosion potential values shifted to slightly more positive values, thus indicating mixed inhibitor behavior. The anodic and cathodic polarization curves showed that D-213 N is an effective corrosion inhibitor, since both the anodic and the cathodic reactions were polarized in comparison with those obtained without inhibitor. For all concentrations the cathodic polarization curves were more polarized than the anodic ones. The inhibition efficiency was in the range 75–98%, calculated from values of weight loss and corrosion current density, i corr, obtained by extrapolation of Tafel cathodic linear region.  相似文献   

7.
In recent years, polymer amines have been recognized as an excellent corrosion inhibitors for iron in acid solutions. In this work, the inhibitive effect of p‐toluidine and poly(p‐toluidine) on corrosion of iron in 1M HCl has been studied by the electrochemical methods such as impedance, linear polarization, Tafel polarization techniques. The effectiveness of poly(p‐toluidine) was found to be high in comparison with that of monomer. The results showed that p‐toluidine and poly(p‐toluidine) suppressed both cathodic and anodic processes of iron dissolution in 1M HCl. The inhibition efficiency of both p‐toluidine and poly(p‐toluidine) were found to increase with the inhibitor concentrations. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Electrochemical frequency modulation, EFM is a new technique for corrosion rate measurements. With the EFM technique, the corrosion rate and corrosion kinetic parameters can be obtained instantaneously without prior knowledge of Tafel slopes, which makes this method an ideal technique for application as a corrosion monitoring tool. Results obtained with the EFM technique were shown to be in agreement with chemical (weight loss) and electrochemical methods (Tafel extrapolation and electrochemical impedance spectroscopy, EIS) for corrosion rate measurements. New synthesized hydrazine carbodithioic acid derivatives namely, N′-furan-2-yl-methylene-hydrazine carbodithioic acid (A), N′-(4-dimethylamino-benzylidene)-hydrazine carbodithioic acid (B) and N′-(3-nitro-benzylidene)-hydrazine carbodithioic acid (C) were examined as corrosion inhibitors for carbon steel in 1 M perchloric acid solution. The results obtained from both chemical and electrochemical measurements show that these compounds suppressed both anodic and cathodic processes of carbon steel corrosion in 1 M HClO4 by adsorption on the electrode surface. The adsorption mode follows the Langmuir adsorption isotherm. The efficiency of the inhibitors increases in the order C > B > A.  相似文献   

9.
Inhibition of C-steel corrosion by some thiadiazole derivatives (I–VI) in 1 M H2SO4 was investigated by weight loss, potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) techniques. The presence of these compounds in the solution decreases the double layer capacitance, increases the charge transfer resistance and increase of linear polarization. Polarization studies were carried out at room temperature, and showed that all the compounds studied are mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were calculated and discussed. Electrochemical impedance was used to investigate the mechanism of corrosion inhibition. The adsorption of the compounds on C-steel was found to obey Langmuir’s adsorption isotherm. The synergistic effect brought about by combination of the inhibitors and KSCN, KI and KBr was examined and explained. The mechanism of inhibition process was discussed in the light of the chemical structure and quantum-chemical calculations of the investigated inhibitors.  相似文献   

10.
The inhibition of corrosion of steel by two P-containing compounds, sodium methyldodecyl phosphonate and sodium methyl (11-smethacryloyloxyundecyl) phosphonate, in hydrochloric acid has been investigated at various temperatures using electrochemical techniques (impedance spectroscopy (EIS), potentiodynamic polarization) and weight loss measurements. Inhibition efficiency (E%) increased with phosphonate concentration. Adsorption of inhibitors on the steel surface in 1 M HCl follows the Langmuir isotherm model. EIS measurements showed that the dissolution process of steel occurred under activation control. Polarization curves indicated that inhibitors tested acted as cathodic inhibitors. The temperature effect on the corrosion behavior of steel in 1 M HCl without and with the inhibitor was studied in the temperature range from 313 to 353 K. The adsorption free energy and activation parameters for the steel dissolution reaction in the presence of phosphonates were determined.  相似文献   

11.
Methionine (MET) is non-toxic and easily biodegradable so that it is an alternative corrosion inhibitor in the water treatment and industrial pickling process. In this article, the inhibition behavior of MET combined with cetrimonium bromide (CTAB) and cetylpyridinium bromide (CPB) for copper corrosion in 0.5 M HCl solution has been investigated by using the electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and polarization curve methods. It shows that combination of MET with CTAB or CPB improves the inhibition performance effectively, and produces strong synergistic inhibition effect. The combined inhibitors suppress cathodic reaction and shift the corrosion potential toward more negative values. The mixed CTAB/MET has a better synergistic effect compared with the mixed CPB/MET. The quantum chemical parameters were calculated by PM3 semi-empirical quantum method. The better synergistic inhibition between MET and CTAB is attributed to their stronger electrostatic interaction.  相似文献   

12.
The influences of Polycarpaea corymbosa (PC) and Desmodium triflorum (DT) leaf extracts on the corrosion behavior of mild steel (MS) in 1.0 M HCl was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The effect of temperature on the corrosion behavior of MS in 1.0 M HCl with the addition of plant extracts was studied in the temperature range of 300 K–320 ± 1 K. The results revealed that PC and DT were excellent green inhibitors and the inhibition efficiencies obtained from weight loss and electrochemical experiments were in good agreement. Inhibition efficiencies up to 91.78 % for PC and 92.99 % for DT were obtained. Potentiodynamic polarization studies revealed that both the inhibitors behaved as mixed‐type inhibitors. Adsorption behavior of these green inhibitors on the MS surface was found to obey the Langmuir adsorption isotherm. The thermodynamic parameter values of free energy of adsorption (?Gads) and enthalpy of adsorption (?Hads) revealed that each inhibitor was adsorbed on the MS surface via both chemisorption and physisorption mechanisms. The adsorption mechanism of inhibition was supported by FT–IR, UV–Visible, WAXD and SEM–EDS.  相似文献   

13.
The inhibition of corrosion of steel by two P-containing compounds, sodium methyldodecyl phosphonate and sodium methyl (11-smethacryloyloxyundecyl) phosphonate, in hydrochloric acid has been investigated at various temperatures using electrochemical techniques (impedance spectroscopy (EIS), potentiodynamic polarization) and weight loss measurements. Inhibition efficiency (E%) increased with phosphonate concentration. Adsorption of inhibitors on the steel surface in 1 M HCl follows the Langmuir isotherm model. EIS measurements showed that the dissolution process of steel occurred under activation control. Polarization curves indicated that inhibitors tested acted as cathodic inhibitors. The temperature effect on the corrosion behavior of steel in 1 M HCl without and with the inhibitor was studied in the temperature range from 313 to 353 K. The adsorption free energy and activation parameters for the steel dissolution reaction in the presence of phosphonates were determined.  相似文献   

14.
Polyaniline (PANi), poly(2-chloroaniline) (PClANi), and poly(aniline-co-2-chloroaniline) (co-PClANi) films were synthesized by electrochemical deposition on 304-stainless steel (SS) from an acetonitrile solution. The structural properties of these polymer films were characterized by spectroscopic (FTIR and UV–vis) and electrochemical (cyclic voltammetry) methods. Open circuit potential–time (Eocp–time) curves, potentiodynamic polarization, and electrochemical impedance (EIS) measurements showed that these films have significant protective performance against corrosion of SS in 0.5 M HCl solution. It was found that co-PClANi film has acted as a passivator as well as barrier for cathodic reduction reaction in a similar manner as PANi film. However, PClANi film has behaved only as barrier for corrosion protection of SS in 0.5 M HCl.  相似文献   

15.
Electrochemical and XPS investigations of cobalt in KOH solutions   总被引:1,自引:0,他引:1  
The electrochemical behaviour of cobalt in KOH solutions of different concentrations was studied. The effects of applied potential, temperature and the presence of aggressive Cl ions were investigated. Different electrochemical methods such as open-circuit potential measurements, polarisation techniques and electrochemical impedance spectroscopy (EIS) were used. The electrochemical behaviour of cobalt in naturally aerated KOH solutions is characterized by three different regions according to the alkali concentration. Corrosion behaviour was observed at high concentrations (0.3–1.0 M); passivation at lower concentrations (0.01–0.05 M), and at intermediate concentrations (0.1–0.2 M) corrosion followed by passivation was recorded. The corrosion parameters (i corr, E corr, and R corr) under various conditions were calculated. Equivalent-circuit models for the electrode–electrolyte interface under different conditions were proposed. The experimental impedance data were fitted to theoretical data according to the proposed models. The relevance of the proposed models to the corrosion–passivation phenomena occurring at the electrode–solution interface was discussed. The electrochemical experimental results and discussions were supported by surface analytical techniques.  相似文献   

16.
A comparative study of 5-amino-1,2,4-triazole (5-ATA), 5-amino-3-mercapto-1,2,4-triazole (5-AMT), 5-amino-3-methylthio-1,2,4-triazole (5-AMeTT) and 1-amino-3-methylthio-1,2,4-triazole (1-AMeTT) as inhibitors for mild steel corrosion in 0.1 M HCl solution at 20 °C was carried out. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of these inhibitors under the influence of various experimental conditions. Measurements of open circuit potential (OCP) as a function of time till reaching the steady-state potentials (Est) were also established. The studies have shown that 5-AMT was the most efficient inhibitor reaching values of inhibition efficiency (IE%) up to 96% at a concentration of 10−3 M. Polarization curves showed that the four studied compounds act as mixed inhibitors. The potential of zero charge (PZC) of mild steel was determined in 0.1 M HCl in the absence and presence of the studied inhibitors. The effect of chemical structure of the four tested inhibitors was discussed. Results obtained from OCP versus time, polarization and impedance measurements are in good agreement.  相似文献   

17.
The effects of a small addition of Mn (0.4 wt%) on the corrosion behaviour of pure Zn (99.995 wt%) in a mixed solution (0.1 M NaCl + 0.1 M Na2SO4 + 0.01 M NaHCO3, pH 8.4) were investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and X-ray photoelectron spectroscopy (XPS). The electrochemical impedances of both Zn and Zn–0.4Mn have been successfully fitted with a suitable EIS equivalent circuit model. Fitted impedance results revealed that 0.4 wt% Mn improved both the pore resistance and charge transfer resistance of Zn in the mixed solution. As a result, both anodic and cathodic reaction rates were reduced. X-ray photoelectron spectroscopy (XPS) analysis showed that the corrosion films formed in the mixed solution consisted of zinc oxide (ZnO), zinc hydroxide (Zn(OH)2) and zinc hydrozincite (Zn5(CO3)2(OH)6). The role of small addition of Mn is that it promotes the precipitation of hydrozincite in the pores of corrosion film. An “alleviation of local acidification” mechanism is proposed to explain the investigated results.  相似文献   

18.
Aniline derivatives, namely 2-chloroaniline, 2-fluoroaniline, 2-aminophenetole, 2-ethylaniline, o-aminoanisole and o-toluidine were studied for their possible use as copper corrosion inhibitors in 0.5 M HCl. These compounds were studied in concentrations from 10−3 to 10−4 M at temperature 298 K. Effectiveness of these compounds was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. These compounds inhibit the corrosion of copper in HCl solution to some extent. In each case, inhibition efficiencies increase with increasing concentration. A suggested model for the interface as well as some kinetic data is presented. These inhibitors obey the Temkin adsorption isotherm. A correlation between structure and inhibition efficiencies is suggested.  相似文献   

19.
Seven cationic surfactants: 1-methyl-3-tetradecyl imidazolium bromide, 1-methyl-3-hexadecyl imidazolium bromide, N,N-tetradecyl pyridinium bromide, N,N-hexadecyl pyridinium bromide, N,N-dimethyl-N-ethylbenzyl ammonium bromide, N,N-dimethyl-N-ethylbenzyl ammonium laurate and N,N-dimethyl-N-ethylbenzyl ammonium acetate, were investigated at different doses (10, 25, 50, 100, and 200 ppm) as corrosion inhibitors for steel grade API 5L X52 in hydrochloric acid 2 M using a weight loss technique, impedance and polarization resistance methods. The corrosion inhibition of steel grade API 5L X52 of the cationic surfactants was attributed to their molecular structure (heterocyclic ring, hydrophobic chain length and counterion) that enhances adsorption onto steel surface. The best protective efficiency of the film was higher than 90% (N,N-Dimethyl-N-ethylbenzyl ammonium acetate). It is important to know how organic inhibitor films grown on the metallic surface in order to achieve superior corrosion inhibition, hence experimental findings were described by Langmuir adsorption isotherm. The Electrochemical Impedance Spectroscopy spectrums were fitted by means of the Voigt model.  相似文献   

20.
In the present study novel nonionic surfactants were synthesized, characterized, and tested as corrosion inhibitors for carbon steel in 1 M HCl solution. The inhibiting performances of these surfactants were studied by weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The adsorption of these inhibitors was well described by Langmuir adsorption isotherm, and the kinetic parameters were calculated and discussed. The inhibition efficiency (IE) was found to rise with increasing the concentration of these inhibitors. Polarization measurements revealed that the inhibitors acted as mixed-type inhibitors. The efficiencies obtained from the impedance measurements were in good agreement with those obtained from the weight loss and potentiodynamic polarization techniques which prove the validity of these tools in the measurements of the tested inhibitors. The surface parameters of the synthesized nonionic surfactants were investigated and the results showed that these surfactants have lower values of surface tension and are effective as wetting and emulsifying agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号