首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
采用光学显微镜(OM)和扫描电镜(SEM)分析研究了Zr-Sn-Nb-Fe锆合金板材在热轧及退火→中间冷轧及退火→成品轧制及退火的全工艺流程中晶粒组织的演变规律。结果表明,热轧后合金组织沿轧制方向呈带状分布,晶粒粗大并破碎变形;中间冷轧和成品轧制后合金为沿轧制方向带状分布的细小形变组织,合金组织明显细化;中间退火和成品退火后合金中晶粒再结晶程度较热轧退火时明显提高,晶粒取向差逐渐向正态分布变化,晶粒组织也逐渐均匀化和细化,最终获得细小、均匀分布的完全再结晶晶粒组织,晶粒度12级。  相似文献   

2.
在工业生产条件下,对比分析了不同热轧终轧温度对中低牌号无取向硅钢组织和磁性能影响。结果表明:当热轧终轧温度为890℃时,热轧带钢表层为铁素体再结晶组织,芯部为铁素体相变组织;带钢经冷轧退火后,成品晶粒细小,铁损为5.565 W/kg,磁感为1.744 T,磁性能较差;当终轧温度为870℃时,热轧带钢全为粗大的铁素体再结晶组织,带钢经冷轧退火后,成品晶粒粗大,铁损降低至5.329 W/kg,磁感升高至1.762 T,磁性能最佳;当终轧温度降低至850℃时,带钢在热轧时再结晶晶粒难以长大,经冷轧退火后,铁损为5.507 W/kg,磁感为1.760 T,磁性能介于890℃和870℃之间。此外,实际工业生产数据表明,当热轧终轧温度为850~875℃时,成品磁性能明显优于880~900℃。  相似文献   

3.
热轧组织对冷轧无取向硅钢退火织构及组织的影响   总被引:1,自引:1,他引:0  
对不同加热温度处理的热轧低硅钢带进行了冷轧及退火实验,分析了热轧钢带的组织对冷轧无取向硅钢再结晶退火过程中的组织及织构的影响。结果表明:热轧组织对冷轧无取向电工钢冷轧板再结晶组织及织构演变有重要影响;等轴晶粒组织的热轧钢带比混晶组织的热轧钢带冷轧后再结晶退火快,且退火后晶粒尺寸均匀;随着等轴晶粒尺寸增加,冷轧退火后形成的冷轧硅钢{110}类型的织构增强,{100}类型的织构减弱;表明热轧组织为等轴晶粒时,不利于冷轧无取向硅钢磁性能的改善。  相似文献   

4.
对冷轧ZK61镁合金板材进行不同温度和时间的退火处理,研究不同退火工艺对冷轧ZK61镁合金板材组织和力学性能的影响。研究表明:提高退火温度可以加快冷轧ZK61镁合金组织静态再结晶速度,但退火温度过高,会使组织晶粒发生粗化。经360℃×60 min退火的ZK61合金试样晶粒尺寸细小,分布均匀,组织为细小均匀的等轴晶,再结晶基本完成。此工艺下,ZK61镁合金合金力学性能最佳。  相似文献   

5.
对Inconel 740H合金荒管进行了不同变形量的冷轧实验,分析了其冷变形特性。通过冷变形后不同制度的退火处理,对Inconel 740H合金组织演变规律进行研究,建立了退火过程中再结晶晶粒长大方程。同时引入不均匀因子Z对组织均匀性进行评定。研究表明,Inconel 740H合金中间退火处理中的静态再结晶过程主要受退火温度和保温时间影响,所构建的再结晶晶粒长大方程与实验值吻合度较好。冷轧变形量为20%,中间退火制度为1100℃/5 min时得到的组织最为均匀。  相似文献   

6.
轧制及退火处理对铸轧态AZ31镁合金组织的影响   总被引:2,自引:0,他引:2  
利用金相显微镜、SEM及TEM对铸轧态AZ31镁合金在不同轧制及退火状态下的显微组织进行了研究.结果表明:铸轧态AZ31合金在420℃进行轧制变形时,合金以动态再结晶为主,且随着轧制变形量的增加.等轴再结晶晶粒尺寸逐渐变小.变形量为40%时.析出相得到破碎,晶界也变得更加清晰,此外,局部区域还出现了等轴再结晶晶粒;当变形量增大到90%时,合金以细小的等轴再结晶晶粒为主,晶粒尺寸约为10μm,且TEM观察可知合金基体内分布有较多细小的析出相,部分粗大再结晶晶粒边界附近还分布有一些由于动态再结晶而形成的细小晶粒.铸轧态AZ31合金在420℃轧制变形90%后再进行不同温度的退火,可知随温度升高再结晶晶粒长大明显,到450℃退火时,晶粒长大到20~30μm,对此退火样进行300℃温轧,基体内出现大量的孪晶和亚晶组织.  相似文献   

7.
研究了Nb-Ti-Al高温合金的静态再结晶行为及晶粒长大行为,并通过实验得出了再结晶动力学和晶粒长大方程.结果表明:冷轧变形后,合金在880~1000℃进行退火处理,可获得均匀、细小的晶粒,再结晶晶粒体积分数与退火时间的关系可用Avrami方程进行描述.随着冷轧变形量的增加,再结晶激活能逐渐减小,其范围为274.05 ~ 198.45 kJ/mol.在850 ~1000℃的温度范围内,研究了加热温度和时间对合金晶粒尺寸变化的影响.  相似文献   

8.
介绍了在同一变形条件下,退火温度对高纯Al-1%Si-0.5%Cu(质量分数,下同)合金的再结晶晶粒尺寸的影响。实验证明纯度达到99.999%以上的Al-1%Si-0.5%Cu合金锭坯,经过均匀化处理、多向锻造、中间退火及冷轧、再结晶退火后,在420~450℃时即可形成均匀、细小的等轴晶粒,但当退火温度≥480℃时,局部区域出现晶粒异常长大现象,最大晶粒异常长大温度约为480℃。研究认为退火温度较高时,改变了局部区域第二相的溶解析出行为,造成局部区域第二相减少、粗化,所提供的阻力不足以克服晶界移动的驱动力,则在一些晶界阻力不均匀的地方会发生个别晶粒异常长大。因此在该变形条件下,应控制再结晶退火温度低于480℃,在420~450℃时可得到平均晶粒尺寸近50μm的锭坯。  相似文献   

9.
研究了Mg-4Zn-0.5Er-1Y变形合金轧制板材在经200~380℃,保温0.5~4h退火处理后,合金显微组织的演变及其力学性能的变化规律。结果表明,该合金退火后均出现明显的动态再结晶组织,且晶粒比较细小,基体中存在大量含有稀土元素的第二相,这些第二相在热轧状态下破碎成细小的颗粒,促进了动态再结晶晶粒的异质形核。合金退火处理后的强度较原轧制态降低,但塑性却得到明显的改善。最佳退火温度为350℃,保温0.5h后晶粒尺寸约为8μm,抗拉强度为276MPa,伸长率达到最大为22.5%。经过计算可知,该合金再结晶晶界迁移激活能为22.76kJ/mol,同时建立了该合金再结晶晶粒长大的动力学模型。  相似文献   

10.
借助光学显微镜(OM)、透射电镜(TEM)及电化学实验等方法研究了退火工艺对深冷轧制AISI310S奥氏体不锈钢显微组织和耐蚀性能的影响。结果表明:退火温度小于700℃,深冷变形组织处于回复阶段,退火温度大于700℃,深冷变形组织处于再结晶阶段,再结晶晶粒尺寸处于亚微米量级;随着退火温度增大至1000℃后,再结晶晶粒明显长大至2μm左右。极化曲线测试结果表明,与深冷变形奥氏体不锈钢相比,经退火处理后奥氏体不锈钢具有更高的自腐蚀电位,更低的腐蚀电流密度和更好的抗腐蚀性能。  相似文献   

11.
异步轧制AZ31镁合金板材在退火处理中的组织性能演变   总被引:1,自引:0,他引:1  
研究了异步轧制AZ31镁合金板材经200~350 ℃退火30~120 min后的组织性能演化.在试验条件下,AZ31镁合金板材在200 ℃退火时,随保温时间的延长,组织的均匀程度和晶粒尺寸没有明显变化;在300 ℃退火30 min,基本完成再结晶过程,获得均匀细小的等轴晶,保温时间增加到60 min时,部分再结晶晶粒长大;在350 ℃退火30 min和60 min,均在完成再结晶的同时晶粒长大;300 ℃退火30 min后AZ31镁合金板材的综合性能较好,室温抗拉强度为315 MPa,伸长率为33.0%.  相似文献   

12.
通过光学显微镜、背散射电子衍射分析(EBSD)和室温拉伸试验研究了多道次连续轧制AZ31镁合金板材经200~400℃不同温度退火1 h后晶粒尺寸和微观织构的演化及其与力学性能的关系。结果表明:轧制板材经250℃×1 h退火后,静态再结晶几乎完成,晶粒细小均匀,平均晶粒尺寸约5.5μm,综合力学性能良好,抗拉强度和断后伸长率分别达到261 MPa和26.7%;当退火温度不高于350℃时,退火态板材基面织构较轧态低且差别较小。随退火温度升高,晶粒缓慢长大,晶界取向角分布由10°和30°双峰连续分布转变为30°单峰连续分布。此时,抗拉强度主要与晶粒尺寸有关。当退火温度达到400℃时,再结晶晶粒发生异常长大,基面织构急剧增强,晶界取向角呈离散分布,导致抗拉强度增加,而伸长率显著降低。  相似文献   

13.
利用XRD,SEM-ECC,TEM和EBSD技术,研究了Zr-Sn-Nb系新型锆合金板材加工过程的微观组织及织构演变.结果表明,β相淬火得到的随机织构经热轧后形成沿横向倾斜的基面织构,随后的加工过程均保留该织构;热轧及两次冷轧后的基面织构都为〈1010〉方向平行于轧向(〈1010〉//RD),而退火后转变为〈1210〉方向平行于轧向(〈1210〉//RD).淬火形成的网状魏氏组织经热轧转变为不均匀形变组织,两次冷轧使组织的不均匀性更显著,最终退火得到完全再结晶组织;轧制形成的难变形晶粒多为晶粒C轴平行于轧板法向(C//ND)的取向;最终退火板材的大晶粒多为〈1210〉//RD的基面织构,小晶粒则以〈1010〉//RD为主.结合锆合金的变形及再结晶机制对轧制时产生的不均匀组织及再结晶过程的织构转变进行了分析.  相似文献   

14.
利用XRD,SEM-ECC,TEM和EBSD技术,研究了Zr-Sn-Nb系新型锆合金板材加工过程的微观组织及织构演变.结果表明,β相淬火得到的随机织构经热轧后形成沿横向倾斜的基面织构,随后的加工过程均保留该织构;热轧及两次冷轧后的基面织构都为(1010)方向平行于轧向((1010)∥RD),而退火后转变为(1210)方向平行于轧向((1210)∥RD).淬火形成的网状魏氏组织经热轧转变为不均匀形变组织,两次冷轧使组织的不均匀性更显著,最终退火得到完全再结晶组织;轧制形成的难变形晶粒多为晶粒C轴平行于轧板法向(C∥ND)的取向;最终退火板材的大晶粒多为(1210)∥RD的基面织构,小晶粒则以(1010)∥RD为主.结合锆合金的变形及再结晶机制对轧制时产生的不均匀组织及再结晶过程的织构转变进行了分析.  相似文献   

15.
主要研究了热轧和冷轧后Zr705合金在200~850℃温度范围内的退火行为。与冷轧后Zr705相比,热轧Zr705试样在较高的温度获得峰值硬度,且峰值硬度值较低。通过微观组织观察发现,热轧后Zr705试样中的β相向ω相的转变速率低于冷轧Zr705试样。经500℃退火后冷轧和热轧试样中均可观察到部分再结晶晶粒,但在热轧Zr705试样中的再结晶晶粒更多。热轧和冷轧Zr705试样在700℃保温1h后均再结晶完全。  相似文献   

16.
主要研究了热轧和冷轧后Zr705合金在200~850℃温度范围内的退火行为.与冷轧后Zr705相比,热轧Zr705试样在较高的温度获得峰值硬度,且峰值硬度值较低.通过微观组织观察发现,热轧后Zr705试样中的β相向ω相的转变速率低于冷轧Zr705试样.经500℃退火后冷轧和热轧试样中均可观察到部分再结晶晶粒,但在热轧Zr705试样中的再结晶晶粒更多.热轧和冷轧Zr705试样在700℃保温1h后均再结晶完全.  相似文献   

17.
冷变形过程对617B合金管材的尺寸精度、组织和性能具有重要影响。通过对617B合金荒管进行不同变形量的冷轧实验,对其冷变形特性进行研究。对冷变形后的617B合金进行不同制度下的退火处理,对其退火过程中的组织演变规律进行研究,建立退火过程中的再结晶晶粒长大方程。结果表明:所构建的再结晶晶粒长大方程与实验数据值吻合度较好;617B合金退火过程中组织均匀性受退火温度影响最大;由于碳化物条带的存在,退火过程中易出现组织不均匀的现象,综合考虑晶粒尺寸和组织均匀性两个因素最终确定冷轧变形量为20%,中间退火制度为1140℃、10 min时得到的组织最为均匀。  相似文献   

18.
研究了喷射沉积制备2195铝锂合金锭坯挤压板坯经不同终轧温度热轧至6mm厚度板材,以及经不同中间退火后再冷轧至6mm厚度板材固溶后的晶粒组织。结果表明,终轧温度290℃时,热轧板固溶后表层为粗大再结晶晶粒,而中心层为细长纤维状晶粒;终轧温度降低至220℃时,虽然表层再结晶晶粒尺寸减小,但中心层转变为尺寸粗大的长条状再结晶晶粒。板材中尺寸1μm以上的富Cu第二相粒子数量随中间退火(空冷)温度的增加(从330℃提高至450℃)而增加;冷轧固溶后表层等轴状再结晶晶粒尺寸增加,而中心层晶粒逐渐由粗大长条状再结晶晶粒转变为细小等轴状再结晶晶粒。适当温度中间退火、随炉冷却并冷轧、固溶后表层和中心层全部为细小等轴状再结晶晶粒。优化中间退火后的冷轧板材T8时效态强度最高,而终轧温度220℃的热轧板材T8时效态强度最低。  相似文献   

19.
对溅射靶材用Cr20Ni80合金冷轧管材的微观组织和再结晶退火工艺进行了研究。首先观察了冷轧管材轴向与径向的微观组织变化;其次利用JMatPro计算了Cr20Ni80合金的相图,并设计了再结晶退火工艺;最后对冷轧管材进行了再结晶退火试验,表征了退火后管材的微观组织、晶粒尺寸和硬度。结果表明,冷轧管材沿轴向均为拉长晶,且存在大量孪晶;管材沿径向的微观组织中晶粒尺寸因形变量的增大而减小;当再结晶退火温度为690 ℃时,冷轧管材试样已开始发生再结晶;790 ℃×30 min时,形变晶粒已完全再结晶,平均晶粒尺寸为24.1 μm,为最优再结晶退火工艺;当退火温度进一步升高、保温时间进一步延长时,再结晶晶粒逐渐长大;试样的硬度随退火温度的升高而减小。  相似文献   

20.
以双辊铸轧工艺生产的8111铝合金为研究对象,研究了热处理工艺对其微观组织和性能的影响。结果表明,铸轧板材经过冷轧和均匀化处理后,组织均匀性改善,链状第二相消失,晶粒形貌由细长的纤维状变为等轴细小的再结晶晶粒。随着退火温度的升高,铝箔微观组织经历回复、再结晶和晶粒长大的过程,330℃保温2 h再结晶完成,平均晶粒尺寸约为42μm, 360℃退火时,平均晶粒尺寸最大,约45μm;在研究的退火温度范围内,铝箔基体中的第二相化合物的形貌未发生明显变化;随退火温度升高,铝箔抗拉强度呈下降趋势,退火温度为360℃时,抗拉强度最低为87 MPa,而伸长率呈现先增加后降低的变化趋势,330℃退火时伸长率最大为10.2%,且电导率呈先升高再下降趋势,330~360℃退火时电导率基本不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号