首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheet (0.41–4.80 mm thick) or thin plate structures commonly exist in additively manufactured Ti-6Al-4V components for load-bearing applications. A batch of 64 Ti-6Al-4V sheet samples with dimensions of 210/180 mm × 42 mm × 3 mm have been additively manufactured by selective electron beam melting (SEBM). A comprehensive assessment was then made of their density, surface flatness, microstructure, and mechanical properties in both as-built and hot isostatically pressed conditions, including the influence of the hot isostatic pressing (HIP) temperature. In particular, standard long tensile (156 mm long, 2 mm thick) and fatigue (206 mm long, 2 mm thick) test sheet samples were used for assessment. As-built SEBM Ti-6Al-4V sheet samples with machined surfaces fully satisfied the minimum tensile property requirements for mill-annealed TIMETAL Ti-6Al-4V sheet products, whereas HIP-processed samples (2 mm thick) with machined surfaces achieved a high cycle fatigue (HCF) strength of 625 MPa (R = 0.06, 107 cycles), similar to mill-annealed Ti-6Al-4V (500–700 MPa). The unflatness was limited to 0.2 mm in both the as-built and HIP-processed conditions. A range of other revealing observations was discussed for the additive manufacturing of the Ti-6Al-4V sheet structures.  相似文献   

2.
基于CMT的电弧熔丝增材Ti-6Al-3Nb-2Zr-1Mo合金的组织与性能   总被引:3,自引:3,他引:0  
采用基于冷金属过渡的电弧熔丝增材方法(CMT-WAAM)制备了Ti-6Al-3Nb-2Zr-1Mo合金试样,研究了CMT-WAAM Ti6321合金显微组织、力学性能及其各向异性. 结果表明,CMT-WAAM Ti6321合金显微组织由不规则的多边形原始β晶和晶界α相组成,CMT脉冲工艺(CMT+P)能够有效细化晶粒,组织中没有发现贯穿式的柱状晶,且未发现马氏体.CMT-WAAM Ti6321合金x向和z向的室温抗拉强度达到同级别锻件标准,断口形式均为典型的韧性断裂.成形组织中没有明显的织构存在,拉伸强度的各向异性也不明显,组织中的气孔导致z向的断后伸长率低与x向. x向和z向冲击韧性均不低于65 J,能够满足船用钛合金结构件的需求,冲击断口中存在大量的撕裂型韧窝,为典型的韧性断裂.  相似文献   

3.
针对Ti-6Al-4V-4Zr-Mo(Ti6441)合金采用不同的热处理工艺得到等轴和片层2种微观组织,使用分离式Hopkinson Bar技术对2种组织的试样进行动态剪切试验,研究微观组织对该合金绝热剪切敏感性的影响。结果表明:相同加载条件下,片层组织绝热剪切敏感性较等轴组织低;2种组织动态强度接近,但片层组织较等轴组织具有更好的动态延展性;片层组织试样中的绝热剪切带出现分叉现象,从而可以消耗更多的变形能。  相似文献   

4.
Zhang  Shou-yin  Li  Jin-shan  Kou  Hong-chao  Yang  Jie-ren  Yang  Guang  Wang  Jun 《中国铸造》2016,13(1):9-14
The cast Ti-6Al-4V alloy bars with different section sizes were fabricated by investment casting at counter-gravity condition with the mold temperatures of 300 °C and 650 °C, respectively. The microstructure of the alloy was observed by means of OM and SEM, and the effect of mold temperature and casting dimension on tensile properties was studied. Results show that equiaxed grains are obtained regardless of the casting dimension. β grain size tends to increase with an increase in mold temperature. Hot isostatic pressing of the alloy was carried out for tensile properties' comparison. Room temperature tensile test results show that Ti-6Al-4V alloy produced via counter-gravity casting has good balance of strength and ductility after hot isostatic pressing(HIP). The alloy shows higher ductility due to the elimination of porosity. In both cast and HIP status, the tensile strength is inclined to decrease with an increase in mold temperature, while the ductility is prone to slightly increase. Both the strength and ductility tend to decrease with an increase in the casting dimension.  相似文献   

5.
激光快速成形Ti-6Al-4V合金力学性能   总被引:2,自引:1,他引:2  
采用实验研究的方法,对激光快速成形Ti-6Al-4V合金的力学性能进行了探讨。结果发现:和锻造件相比,激光快速成形沉积态Ti-6Al-4V合金的拉伸性能具有高强低塑特点和更显著的各向异性;成形试样的组织、氧含量和冶金缺陷都将影响到拉伸性能,其中组织的影响最显著,其次为氧含量和熔合不良缺陷:对于氧含量符合GJBGJB2921-1997标准的激光快速成形Ti-6Al-4V合金,经固溶时效热处理后所获得的网篮组织综合性能最好,不论是强度指标还是塑性指标都高于锻件标准。  相似文献   

6.
通过高温拉伸试验研究Ti-6Al-4V(TC4)合金激光焊缝的纵向超塑性变形行为,采用扫描电镜观察超塑性变形前后焊缝的显微组织.结果表明:TC4钛合金激光焊缝具有良好的超塑性变形能力,在900 ℃、10~(-3) s~(-1)工艺条件下伸长率达到最大值397%;在超塑性变形过程中,原始焊缝的针状马氏体首先转变为片层状的α+β组织,而后片层组织发生再结晶等轴化;随着变形温度升高或应变速率降低,等轴化程度增大.  相似文献   

7.
采用光学显微镜、透射电镜和拉伸试验等手段,研究了多道次两向轧制和单向轧制对不同原始状态(热轧态、水淬态和空冷态)Ti-6Al-4V合金显微组织和力学性能的影响。结果表明,热轧态Ti-6Al-4V合金的组织为片状α相+β相+少量等轴α相,水淬态Ti-6Al-4V合金形成了针状马氏体组织,空冷态Ti-6Al-4V合金形成了网状组织。Ti-6Al-4V合金适宜的两向轧制温度为700 ℃,此时合金中可见颗粒状β相弥散分布在α基体上。两向轧制Ti-6Al-4V合金的抗拉强度和屈服强度从高至低顺序为:水淬态>热轧态>空冷态,且轧向强度要高于横向;相较于单向轧制,两向轧制明显降低了Ti-6Al-4V合金板材拉伸性能的各向异性,且水淬态Ti-6Al-4V合金的轧向和横向强度差异最小,700 ℃轧制Ti-6Al-4V合金的主要细化机制为位错细化。  相似文献   

8.
采用包套锻造技术成功制备Ti-45Al-5.4V-3.6Nb-0.3Y合金锻饼,并研究热处理对该合金锻饼组织和性能的影响。通过热处理得到3种不同的组织形态,分别为双态、近层片、和全层片组织,分析热处理过程中合金组织的演变规律,并对不同组织形态的合金进行力学性能测试。结果发现,双态组织的合金具有最好的室温塑性,其值可达1.35%,近层片组织的合金具有较高的室温强度,屈服强度为605.31MPa,断裂强度为665.75MPa。  相似文献   

9.
由晓晓  常玲  吕俊霞 《表面技术》2019,48(5):97-101
目的研究β晶界对激光直接熔化沉积(LDMD)Ti-6Al-4V合金裂纹形核或传播行为的影响,以澄清合金的断裂机制,为合金性能的改善提供理论依据。方法采用LDMD Ti-6Al-4V合金粉末,在Ti-6Al-4V基板上逐层堆积形成沉积层。沿沉积层扫描方向截取试样,在室温下观察样品的微观组织形貌,并对原位拉伸过程中的微观组织演化进行实时研究。同时研究β晶界对微裂纹萌生、扩展和断裂的影响行为,总结断裂机理。结果 LDMD Ti-6Al-4V合金组织宏观呈现出沿构造方向生长的粗大柱状β晶,β晶内由板条状α晶和整齐排列的具有相同生长取向的α簇组织组成,并有少量孔洞缺陷。采用原位扫描电镜拉伸样品时发现,在横向拉力作用下,样品最初在孔洞周围发生变形,之后裂纹的萌生扩展主要沿β晶界进行,β晶界对拉力起阻碍作用,造成样品的伸长率较低。拉伸过程中,微观组织主要沿着β晶界周围的α相变形,并且孔洞缺陷引起的应力集中使得缺陷周围变形最严重,变形方向与拉力方向呈45°。结论孔洞缺陷决定了样品的初始变形位置,而β晶界则决定了裂纹传播的方向,且由于拉伸试样的截取方向与β晶界相垂直,导致样品的伸长率较低,所以β晶界对样品的力学性能及断裂机理起决定作用。  相似文献   

10.
采用包套锻造技术成功制备Ti-45Al-5.4V-3.6Nb-0.3Y合金锻饼,并研究热处理对该合金锻饼组织和性能的影响。通过热处理得到3种不同的组织形态,分别为双态、近层片、和全层片组织,分析热处理过程中合金组织的演变规律,并对不同组织形态的合金进行力学性能测试。结果发现,双态组织的合金具有最好的室温塑性,其值可达1.35%,近层片组织的合金具有较高的室温强度,屈服强度为605.31MPa,断裂强度为665.75MPa。  相似文献   

11.
To investigate the influence of island scanning on the microstructures and mechanical properties of direct laser-deposited Ti–6 Al–4 V structures, two samples are prepared using island scanning and orthogonal successive scanning, respectively.The microstructures, relative density, and mechanical properties of the samples prepared using these two scanning strategies are compared. Each sample exhibits columnar β-grain morphology and basket-weave microstructure characterization.The grains of the sample prepared using island scanning are significantly finer than that prepared by orthogonal successive scanning due to faster cooling during deposition. However, the relative density of the sample prepared using island scanning was slightly smaller due to the concentration of lack-of-fusion pores at the overlap zone of the island. Tensile testing at room temperature indicates that the ultimate tensile strength and yield strength of the sample prepared using island scanning is enhanced due to finer grains, while the ductility of the sample is weakened due to defects.  相似文献   

12.
In this study, α+β Ti-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing (LAM) were designed according to a Ti-6Al-4V cluster formula. This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo, V, Nb)2Ti), in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb, Ti-5.97Al-2.33V-2.93Mo, and Ti-5.97Al-2.33V-2.20Mo-0.71Nb (wt.%). The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined. The sizes of the β columnar grains and α laths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy, whereas Mo- or Mo/Nb-added alloys contain finer grains. It indicates that Nb gives rise to coarsened β columnar grains and α laths, while Mo significantly refines them. Furthermore, the single addition of Nb improves the elongation, whereas the single addition of Mo enhances the strength of the alloys. The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys, leading to the best properties with an ultimate tensile strength of 1,070 MPa, a yield strength of 1,004 MPa, an elongation of 9%, and micro-hardness of 355 HV. The fracture modes of all the alloys are ductile-brittle mixed fracture.  相似文献   

13.
The cold spray of Ti-6Al-4V coatings deposited on Ti-6Al-4V substrates has been investigated. Coatings were produced using nitrogen and helium as propellant gases and subsequently heat treated with various temperature-time conditions. The microstructure was characterized by SEM and optical microscopy while mechanical properties were measured by microhardness and tensile testing. It is shown that coatings sprayed with nitrogen gas were relatively porous in comparison to the nearly completely dense coatings obtained with helium gas. In the as-sprayed condition, coatings displayed high hardness but low tensile strength. Heat treatments at temperatures of 600 °C and higher resulted in a decrease in hardness due to microstructural changes within the particles including recovery, recrystallization, and/or phase transformation. However, an increase in tensile strength was attributed to improved inter-particle bonding due to an observed change from brittle to ductile features on the fracture surface. The highest strength coating produced was a helium-sprayed coating annealed at 600 °C, which featured a tensile strength ~85% of the minimum required bulk value and coating/substrate microstructures similar to the as-received powder/substrate microstructures.  相似文献   

14.
An experimental investigation on the effects of post-annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V alloys has been conducted. The microstructure and phase evolution as affected by annealing treatment temperature were examined through scanning electron microscopy and x-ray diffraction. The tensile properties and Vickers hardness were measured and compared to the commercial Grade 5 Ti-6Al-4V alloy. Corrosion behavior of the parts was analyzed electrochemically in simulated body fluid at 37 °C. It was found out that the as-printed parts mainly composed of non-equilibrium α′ phase. Annealing treatment allowed the transformation from α′ to α phase and the development of β phase. The tensile test results indicated that post-annealing treatment could improve the ductility and decrease the strength. The as-printed Ti-6Al-4V part exhibits inferior corrosion resistance compared to the commercial alloy, and post-annealing treatment can reduce its susceptibility to corrosion by reducing the two-phase interface area.  相似文献   

15.
研究高氧含量(0.30%,质量分数,下同)、工业水平氧含量(0.16%)和极低氧含量(0.06%) 3种Ti-2Al合金在低温(77 K)、室温和高温(673 K)下的拉伸力学行为。结果表明:低温和室温下,随着氧含量的升高,材料强度提高,塑性降低。然而,高温673 K下,不同氧含量Ti-2Al合金强度和塑性基本相同,材料强度和塑性对氧含量的依赖性显著降低。氧含量较低时,温度对Ti-2Al合金塑性影响很小。微观组织观察表明,随着温度的升高,工业水平及高氧含量Ti-2Al合金拉伸断口由脆性解理转变为延性韧窝。高温环境下,固溶氧原子扩散速率提高使Cottrel气团对位错滑移的阻碍减弱,均匀变形的结果导致高氧含量Ti-2Al合金延性改善。  相似文献   

16.
Zhu  Zhi-hao  Liu  Yu-han  Chen  Zhi-peng  Liu  Tian-yu  Zhang  Shuang  Dong  Dan-dan  Dong  Chuang 《中国铸造》2023,20(1):23-28

Ti-Al-V-Zr quaternary titanium alloys were designed following α-{[Al-Ti12](AlTi2)}17−n+β-{[Al-Ti12Zr2](V3)}n, where n=1–7 (the number of β units), on the basis of the dual-cluster formula of popular Ti-6Al-4V alloy. Such an alloying strategy aims at strengthening the alloy via Zr and V co-alloying in the β-Ti unit, based on the original β formula [Al-Ti14](V2Ti) of Ti-6Al-4V alloy. The microstructures of the as-cast alloys by copper-mold suction-casting change from pure α (n=1) to α+α′ martensite (n=7). When n is 6, Ti-5.6Al-6.8V-8.1Zr alloy reaches the highest ultimate tensile strength of 1,293 MPa and yield strength of 1,097 MPa, at the expense of a low elongation of 2%, mainly due to the presence of a large amount of acicular α′ martensite. Its specific strength far exceeds that of Ti-6Al-4V alloy by 35%.

  相似文献   

17.
Three-dimensional parts of the 30 CrMnSiA steel were successfully fabricated using selective laser melting(SLM). The microstructures and mechanical properties of the SLM-processed 30 CrMnSiA samples were investigated by scanning electron microscope and transmission electron microscopy. The results indicate that the microstructures of the 30 CrMnSiA samples consist mainly of lath martensite and acicular martensite. The value of the surface roughness decreases with increasing laser energy density(LED) before it reaches a minimum and then increases with further increasing LED. The relative density, microhardness and ultimate tensile strength of the SLM-processed samples initially increase and then decrease with increasing LED. By taking the relative density, surface roughness, microhardness and ultimate tensile strength into account, the optimized LED should be in the range of 46.15–51.28 J mm~(-3) for the SLM-processed30 CrMnSiA alloys. In addition, the differences in the microstructures and mechanical properties between the conventionally wrought 30 CrMnSiA sample and SLM-processed 30 CrMnSiA samples were also studied.  相似文献   

18.
The room temperature tensile properties of Ti-6Al-4V alloy prepared under two different processing routes were evaluated and compared. One group of samples was prepared by conventional casting-forging-rolling into flat plates. The other group was prepared by using Triton??s Laser Free-Form Fabrication (LF3)? processes, i.e., a laser was used to melt pre-alloyed powders of the required metallic composition as they were dropped onto a moveable substrate programmed to move in such a manner as to form a solid alloy plate. Five populations of Ti-6Al-4V were evaluated: a standard wrought form, an as-deposited form, a machined as-deposited form, a heat-treated as-deposited form, and a machined as-deposited and heat-treated form. The poorest mechanical properties occurred with the rough surfaces, likely due to existing microcracks and stress concentrations. The LF3? as-deposited material had mechanical properties comparable to, if not higher than, the mechanical properties of the wrought material. Further evaluations of the laser-formed material for complex spacecraft piece parts were warranted, specifically in regards to improving the surface finish of the materials.  相似文献   

19.
采用选区激光熔化技术(SLM)制备Ti-6Al-4V合金圆棒试样,通过不同的热处理工艺改善材料的拉伸性能,并对SLM制备的Ti-6Al-4V合金试样开展了高周疲劳性能测试。通过微观组织和疲劳试样断口分析,揭示了显微组织结构与拉伸性能的关系,以及Ti-6Al-4V合金的疲劳裂纹起始源和裂纹扩展机理。结果表明,热处理工艺对SLM成型Ti-6Al-4V合金的力学性能有显著的影响,920 ℃×1 h水冷,随后800 ℃×2 h炉冷的固溶时效热处理制度可以获得较好的综合室温拉伸性能。其室温组织为晶界上分布的α相和晶粒内部片层状分布的α+β相。SLM成型Ti-6Al-4V合金显微组织中的晶界形成与扫描路径相关,热处理过程中α相会优先在扫描分区搭接处析出。与手册锻件的疲劳寿命曲线比较,在同样的最大应力水平下,增材试样的疲劳寿命比锻件的疲劳寿命低,这种降低的趋势随着应力水平的降低而逐步增大。在400 MPa的应力水平下(R=-1),锻件的疲劳寿命已经在2×107水平,增材试样的疲劳寿命依然较低,约为锻件的1%。SLM成型Ti-6Al-4V合金的应力疲劳寿命偏低,是由于试样中存在未熔合缺陷造成。扫描分区搭接处易产生未熔合缺陷,而疲劳裂纹也会沿着这些缺陷扩展。  相似文献   

20.
由于焊接性能好,成本低,碳钢材料常被用于制作热等静压致密化TiAl基合金粉末的包套。在高温高压下,碳钢包套和TiAl基合金粉末通过原子扩散在扩散区形成脆性相,导致包套失效,并降低TiAl基合金压坯的致密度。为了确保碳钢包套在热等静压致密化TiAl基合金粉末过程中的可靠性,本文利用热喷涂的方法在20#钢包套内壁添加了Al2O3/ZrO2(A-Z)涂层,然后在 。在热等静压试验中,带有A-Z涂层的20#钢包套用于热等静压致密化Ti-46Al-2Cr-2Nb-(W, B)预合金粉末,其工艺为:1523K,2.5小时,130MPa+1603K,0.5小时,130MPa。为了对比,利用没有A-Z涂层的20#钢包套在1523K,3小时,130MPa的工艺参数开展了热等静压致密化试验。利用扫描电镜、电子探针等设施对获得的压坯进行了观测和分析。结果表明:A-Z涂层的加入可以防止脆性金属间化合物的形成。在热等静压过程中,20#钢包套中的Fe原子无法通过扩散的方式与TiAl基合金中的钛原子和铝原子相遇。因此,20#钢包套在热等静压过程中的可靠性得到了保证。此外,通过利用添加A-Z涂层的钢包套获得了完全致密的TiAl基合金压坯。压坯呈现出了近全片层类型的微观组织,其室温下的抗拉强度和延伸率也分别突破了590MPa和2.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号