首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以4-氨基-2,6-二氯吡啶为原料,经过硝化和缩合两步反应,合成出一种新型耐热炸药,4-氨基-2,6-双(5-氨基-1 H-四唑基)-3,5-二硝基吡啶(ABDP),总收率为36%。采用核磁共振、质谱及元素分析对产物结构进行表征。分别研究了3-氨基-1,2,4-三氮唑和5-氨基四唑与4-氨基-2,6-二氯-3,5-二硝基吡啶的缩合反应,结果发现,3-氨基-1,2,4-三氮唑中伯胺和仲胺的亲核性相近,5-氨基四唑中仲胺的亲核性优于伯胺。用热重(TG)和差示扫描量热法(DSC)研究了ABDP的热分解性能,发现其在322℃有一个热分解峰,322℃时总热失重量为97%,采用Rothstein方法计算4-氨基-2,6-双(5-氨基-2 H-四唑基)-3,5-二硝基吡啶的爆速为8823m·s-1,爆压为36.72GPa。  相似文献   

2.
两种新型1-取代的5-氨基四唑含能衍生物的合成及性能   总被引:1,自引:1,他引:0  
赵坤  刘祖亮  马丛明 《含能材料》2015,23(11):1099-1102
以2-氯-4-氨基吡啶为原料,经硝化得到2-氯-4-氨基-3,5-二硝基吡啶,然后与5-氨基四唑进行缩合反应得到新型含能化合物2-(5-氨基-四唑-1-基)-4-氨基-3,5-二硝基吡啶(1),收率64%;由2-氨基-6-氯-3,5-二硝基吡啶与5-氨基四唑缩合得到新型含能化合物6-(5-氨基四唑-1-基)-2-氨基-3,5-二硝基吡啶(2),收率41%。采用核磁共振、红外、质谱、元素分析对化合物1和2进行了结构表征。计算了化合物1和2的爆速、爆压及氧平衡,利用TG和DSC分析法研究了化合物1和2的热行为。结果表明,化合物1和2具有相同的爆速、爆压及氧平衡,其值分别为8.18 km·s-1,30.7 GPa和-62.9%。化合物1的热失重在280~325℃范围内变化,累计失重71%,热分解峰温为304.5℃;化合物2的热失重在285~415℃范围内变化,累计失重65%,初始分解温度为310.67℃。  相似文献   

3.
以氨水为胺化剂,KMnO4为氧化剂,在不同反应条件下实现2,6-二氨基-3,5-二硝基吡啶(ANPy)和2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)4位的氧化胺化反应,目标化合物2,4,6-三氨基-3,5-二硝基吡啶(TANPy)和2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物(TANPyO)的收率分别达到81.5%和85.4%.探讨了溶剂类型、氨水浓度等反应条件对目标化合物产率影响,并讨论了2,6-二氨基-3,5-二硝基吡啶(2,6-二氨基-3,5-二硝基吡啶-1-氧化物)氧化胺化反应结果与3-硝基吡啶不同的原因.采用1H NMR, IR和MS对目标化合物的结构进行了表征.  相似文献   

4.
2,6-二苦氨基-3,5-二硝基吡嗪的合成与表征   总被引:1,自引:1,他引:0  
以2,4,6-三硝基氯苯与2,6-二氨基吡嗪为原料,经过缩合、硝化两步反应,合成了一种新化合物2,6-二苦氨基-3,5-二硝基吡嗪(BPNP),总收率为47%。采用红外光谱(FTIR)、核磁共振(NMR)、质谱(MS)对产物进行了表征。确定了以异丙醇为溶剂,吡啶为催化剂时的产率最高;以V(H_2SO_4)∶V(HNO_3)=4∶1,反应温度50℃,反应时间3h,硝化效果最佳。热重分析(TG)和差示扫描量热结果表明,该化合物的热分解温度为374.3℃,热稳定性与2,6-二苦氨基-3,5-二硝基吡啶(PYX)相当。用MonteCarlo方法估算其理论密度为1.82g·cm~(-3),用Kamlet-Jacobs公式估算其爆速为8.13km·s~(-1),爆压为28.25GPa;采用Miroslav的静电势预估撞击感度的方法,对目标结构进行了稳定性预算,其撞击感度H_(50)的计算值为83cm。理论计算结果说明该材料密度和爆压均高于PYX,具有一定的应用研究价值。  相似文献   

5.
以2,4,6-三硝基氯苯为原料,先与甲胺醇溶液反应得到1-甲氨基-2,4,6-三硝基苯,再经硝硫混酸硝化得到2,4,6-三硝基苯甲硝铵,最后以二甲亚砜为溶剂,强碱甲醇钠为活化剂,与4-氨基-1,2,4-三氮唑反应得到2,4,6-三硝基-3,5-二氨基-N-(1,2,4-三唑-4)-苯胺,总收率达80.18%,并通过1H NMR、MS、IR对中间体和产物进行了表征。结合反应机理,讨论了影响2,4,6-三硝基-3,5-二氨基-N-(1,2,4-三唑-4)-苯胺合成的关键因素,对其进行DSC和TG测试,结果表明两个热分解峰温分别为210 ℃和328 ℃,在200 ℃以下未出现明显的质量损失过程,升温至500 ℃分解残渣为38.89%,其热稳定性良好。  相似文献   

6.
1-氨基-3,5-二硝基-1,2,4-三唑的合成工艺改进及性能   总被引:2,自引:2,他引:0  
以3,5-二氨基-1,2,4-三唑为原料合成出中间体3,5-二硝基-1,2,4-三唑(DNT)钠盐(Ι),用2,4,6-三甲基苯磺酰羟胺(MSH)胺化Ι,得到了目标物1-氨基-3,5-二硝基-1,2,4-三唑(ADNT),收率66%。采用红外、核磁、质谱及元素分析表征了ADNT的结构。确定了较佳的反应条件:室温,摩尔比n(DNT-Na+)∶n(MSH)=1∶1.5,反应时间12 h。采用差示扫描量热法研究了ADNT的热性能,其熔点为128.7℃,分解峰温为225.8℃。按GJB772-1997测试ADNT的撞击感度为H50大于112 cm(落锤2 kg),表明ADTN为性能良好的低感炸药。  相似文献   

7.
3位氨基或硝基取代5-硝基-1,2,4三唑衍生物的合成与表征   总被引:3,自引:3,他引:0  
以3-氨基-5-硝基-1,2,4三唑(ANTA)、3,5-二硝基-1,2,4三唑的铵盐(ADNT)及2,4,6-三硝基氯苯为原料,设计、合成了1-苦基-3-氨基-5-硝基-1,2,4三唑,4-苦基-3,5-二硝基-1,2,4三唑2种未见文献报道的硝基三唑衍生物,其熔点分别为251~252℃,156~157℃,同时改进了2,4,6-三(3-氨基-5-硝基-1,2,4三唑)-1,3,5-均三嗪合成方法,并采用红外光谱、核磁共振光谱、元素分析等对目标化合物进行了结构表征。探讨了3-氨基-5-硝基-1,2,4三唑与2,4,6-三硝基氯苯缩合反应机理,并研究了反应介质、催化剂等关键因素对缩合反应的影响。确定适宜的反应条件为:DMF作为介质,温度70℃,时间8h。  相似文献   

8.
以硝基胍和甲醛为原料,经缩合反应、硝化反应、肼解反应和复分解反应,合成了3,5-二硝氨基-1,2,4-三唑铅盐,采用DSC和TG-DTG方法分析了其热性能,并测试了真空安定性、吸湿性、相容性、感度性能、5s爆发点、爆热、爆速等物化性质和爆轰性能。结果表明:3,5-二硝氨基-1,2,4-三唑铅盐的热稳定性、真空安定性以及耐吸湿性良好,与RDX、HMX、太安、特屈儿、铁、铝、铜等材料均相容,撞击感度和摩擦感度较叠氮化铅(LA)和斯蒂芬酸铅(LTNR)钝感,5s爆发点为226~228℃,爆热为2 236J·g~(-1),爆速为5 755 m·s~(-1),有望作为LA和LTNR的替代物使用。  相似文献   

9.
2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成与性能   总被引:4,自引:4,他引:0  
以2,6-二氨基吡啶为起始原料,经硝化、氮氧化两步反应得到2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)。硝化反应和氮氧化反应收率分别为90%、84%,ANPyO总收率为75%,高于Ritter-Licht公开的方法(45%)。测试了ANPyO的爆速(7000m.s-1,1.50g.cm-3)、DSC放热峰(365℃),以及5s延滞期爆发点(400℃)、摩擦感度(360N)和落锤感度(250cm)。结果表明:ANPyO爆轰性能和安全性能与1,3,5-三氨基-2,4,6-三硝基苯(TATB)接近,是一种在含能材料领域有应用前景的新型高能钝感炸药。  相似文献   

10.
1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的合成及性能   总被引:2,自引:2,他引:0  
以1-氨基-2-硝基胍和4-硝胺基-1,2,4-三唑为原料,制备了一种新型含能离子盐——1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐,并优化了反应条件。用TG-DSC研究了其热分解行为。结果表明,在反应时间为4h,反应温度为50℃的优化合成条件下,1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的产率最高为86.5%。该化合物在175.5℃左右剧烈分解,显示热稳定性较好。利用BornHaber循环求得该化合物的生成热为551.3kJ·mol-1。测得该化合物的密度为1.59g·cm-3。基于密度和生成热,通过Kamlet-Jacobs公式得到该化合物的爆速和爆压分别为8.05km·s-1和爆压26.6GPa。  相似文献   

11.
以丙二腈为原料,采用“两段法”合成了3-氨基-4-偕氨肟基呋咱(AAOF),利用红外光谱、核磁共振及元素分析等进行了结构表征;探讨了影响反应的关键因素,发现AAOF在碱性体系易生成钠盐是造成收率偏低的根本原因;优化了合成工艺条件,确定了适宜的反应条件为:亚硝化温度为5 ~10℃,肟化温度为25℃,脱水环化温度为105℃...  相似文献   

12.
3-氨基-4-氨基肟基呋咱500克级合成   总被引:3,自引:2,他引:1  
以丙二腈为原料经四步连续反应一锅法合成出了新型含能材料化合物3氨基4氨基肟基呋咱(AAOF),得率达72.4%。用IR、MS、1HNMR、13CNMR、元素分析和紫外特征吸收波长(UV)对其分子结构进行了表征。在优化工艺的基础上实现了AAOF的500g级合成。对AAOF的合成反应历程进行了理论推导和验证。  相似文献   

13.
3-氨基-4-偕氨肟基呋咱合成及反应历程研究   总被引:3,自引:1,他引:2  
由丙二腈(MN)合成3-氨基-4-偕氨肟基呋咱的反应机理,已有文献建议为下述四步:亚硝化、重排、肟化和脱水环化.本研究以原位红外跟踪了亚硝化这一步,检测到2-亚硝基丙二烯(NMN)及2-肟基丙二腈(OMN)这一对异构体.此外,得到了-NO、=NOH和-OH的三维原位红外图谱及-NO、=C=N-和-OH在亚硝化过程中特征峰强度的变化,这有助深入了解亚硝化过程.不过,实验未能分离出OMN.NaOMN作为MN与NaNO_2反应的产物,1,3-二氨基-1,2,3-三肟基丙烷作为OMN钠盐(NaOMN)与NH_2OH的产物,两者均被成功地分离,并以IR、NMR、MS和元素分析证实.根据上述实验结果,提出了一个五步反应机理:硝化、重排、成盐、肟化及脱水环化.  相似文献   

14.
从水和乙醇的混合溶剂中培养出了3-氨基-4-酰胺肟基呋咱(AAOF)的单晶,用四圆单晶X-射线衍射仪、IR和元素分析对其结构进行了表征。结果表明, AAOF晶体属单斜晶系,空间群P21/C。晶体学参数为:Mr=143.12,a=0.7651(3) nm,b=1.1702(3) nm,c=1.9216(10) nm,β=96.47(4)°,V=1.7095(12) nm3,Z=4,Dc=1.668 g·cm-3,F(000) =888。AAOF分子平面性好,晶体中存在分子内和分子间氢键。  相似文献   

15.
以3,4-二氨基呋咱(DAF)为原料,过氧化氢为氧化剂,以钨酸钠-草酸为共催化剂,代替传统合成方法的钨酸钠-浓硫酸共催化剂,合成了3-氨基-4硝基呋咱(ANF)。采用正交设计的方法,考察了反应时间、反应温度和共催化剂用量对产率的影响,最终得到ANF合成的较佳工艺条件:反应时间6h,反应温度30℃,共催化剂与原料摩尔比1∶1,在上述条件下ANF产率可达33.7%。  相似文献   

16.
1-氨基-3,5-二硝基吡唑的合成、晶体结构及热性能   总被引:2,自引:2,他引:0  
蒋涛  张晓玉  景梅  舒远杰  王军 《含能材料》2014,22(5):654-657
以3,5-二硝基吡唑为原料,三甲基苯磺酰羟胺(MSH)为胺化剂,合成了1-氨基-3,5-二硝基吡唑(ADNP),收率60.7%。用IR、1H NMR、13C NMR、MS和元素分析表征了其结构。在乙醇中培养了单晶。用四圆X射线衍射仪测定了它的单晶结构:ADNP属正交晶系,P2(1)/n空间群,a=5.543(2),b=9.866(4),c=11.745(5),Z=4,Dc=1.79 g·cm-3。DSC结果表明,两个吸热峰温度分别为110℃和264℃;TG结果表明,在170~268℃之间为急剧失重过程,失重99.1%。  相似文献   

17.
1-氨基-3-甲基-1,2,3-三唑硝酸盐的合成与表征   总被引:1,自引:1,他引:0  
以乙二醛和水合肼为起始原料,经加成-消除、环化甲基化、置换反应得到1-氨基-3-甲基-1,2,3-三唑硝酸盐(1-AMTN),总收率71.8%(以乙二醛计),采用核磁(NMR)、红外(IR)、质谱(MS)和元素分析对产物进行了表征。预测了1-AMTN的性能:密度为1.63 g.cm-3,生成焓84 kJ.mol-1,爆速8115 m.s-1。研究了溶剂、温度、物料比对产物得率的影响,确定了环化甲基化的最佳反应条件:溶剂为乙腈,反应温度20℃,乙二腙与碘甲烷的物料比1∶5,环化甲基化收率为86.7%。对活性二氧化锰进行了回收利用并对其机理进行了探讨。  相似文献   

18.
王亮亮  刘艳  赵守田 《含能材料》2018,26(5):410-415
为详细了解二(5-胺基-1,2,3,4-四唑)二肼盐(Hy_2BTA)的热分解行为,采用热重-差示扫描量热-傅里叶红外光谱-质谱(TG-DSC-FTIR-MS)联用的方法,测定了该化合物在不同升温速率下的热分解曲线、分解气体产物的种类及其含量变化。结果表明:随着温度升高,Hy_2BTA的热分解包括2个吸热过程和2个连续地放热过程,分别对应于Hy_2BTA分子第一个离子键断裂脱除NH_2NH_2;第二个离子键断裂脱除NH_2NH_2的过程中,四唑环开始以断裂—N—N—键的方式释放N_2;四唑环及剩余骨架裂解产生N_2、HN_3、NH_3和HCN;剩余骨架分解产生HN_3、N_2和NH_3,裂解产物聚合成含氮高聚物。利用Kissinger方法计算4个过程的表观活化能分别为115.12,193.75,334.16 kJ·mol~(-1)和243.40 kJ·mol~(-1)。  相似文献   

19.
用差示扫描量热法(DSC),微量热仪和热重-微分热重分析(TG/DTG)研究了1-氨基-2-硝基胍(ANQ)的热分解行为、比热容和绝热至爆时间.结果表明,ANQ的热行为分为相连的两个剧烈放热分解过程.5 ℃·rmin-1下两个分解过程的峰温分别为192.5℃和196.2℃,总共的分解焓为-2075 J·g-1.第一分解阶段的表观活化能和指前因子分别为224.3 kJ·mol-1和1023.15 s-1.自加速分解温度和热爆炸临界温度分别为184.5℃和192.7℃.298.15 K时摩尔比热容为145.5 J·mol-1·K-1.估算的绝热至爆时间约为60 s,表明ANQ的热稳定性良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号