首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用Aspen Plus模拟软件对某厂电石法生产的氯乙烯精馏过程进行了建模与模拟,进料规模为20 m~3/h。选择NRTL物性方法,对低沸塔和高沸塔进行了模拟,模拟结果如下:低沸塔的塔板数为29块,进料位置第3块,回流比为5,操作压力为0.52~0.53 MPa,高沸塔的塔板数为41块,进料位置12块,回流比为0.6,操作压力0.26~0.28 MPa;利用灵敏度分析工具研究了进料位置、采出率、回流比三个因素对精馏过程的影响,对氯乙烯精馏过程进行了优化,结果表明:对于低沸塔,进料位置为3,塔板数为29,B/F为0.99,回流比为6;对于高沸塔,进料位置为12,塔板数为41,D/F为0.99,回流比为0.2。  相似文献   

2.
利用Aspen Plus软件模拟技术,对甲醇-乙醇-水体系进行萃取精馏模拟计算,并用实验进行验证。考察了三塔萃取精馏过程中的T1塔、B1塔和B2塔的塔板数、溶剂比(质量比)、进料位置以及回流比对分离产物纯度的影响,确定了萃取精馏塔T1的塔板数为25,回流比为0.4,原料进料位置在19块塔板,萃取剂进料位置在第5块塔板,B1塔的塔板数为38,回流比12,进料位置在18块塔板,B2塔的塔板数为20,回流比0.27,进料位置在13块塔板。在此条件下,99.511%的甲醇收率高达99.754%,99.829%的乙醇收率高达99.887%,模拟结果与实验结果数据吻合度较高,说明该萃取精馏过程能将甲醇-乙醇-水体系高效分开,该模型适用于分离甲醇-乙醇-水混合物。  相似文献   

3.
提出了非均相层析-萃取精馏分离工艺,并基于Aspen Plus对该分离过程进行模拟研究,以得到质量分数为98.3%的异丙醚和99%的异丙醇,水相异丙醚的质量分数小于2×10-5,异丙醇的质量分数小于1×10-4为目标,确定了粗馏塔、醚精制塔、异丙醇精制塔、乙二醇回收塔最佳工艺参数。粗馏塔的理论塔板数为26,进料板位置为第13块理论板,摩尔回流比为0.14。醚精制塔的理论塔板数为23,进料板位置分别为第3和15块理论板,摩尔回流比为0.92。异丙醇精制塔的理论塔板数为25,进料板位置为第3和第18块理论板,摩尔回流比为2.85。乙二醇回收塔的理论塔板数为40,进料板位置为第15块理论板,摩尔回流比为0.08。总体工艺具有流程简单、产品纯度高、易于操作的特点。  相似文献   

4.
基于Aspen Plus模拟软件,选用UNIFAC物性方法对变压精馏分离C_4与甲醇共沸物过程进行模拟与优化。考察了理论板数、回流比及进料位置对产品质量分数和能耗的影响。确定了较佳工艺条件:加压塔理论板数为30,回流比为1.2,原料进料位置分别为第15块塔板,塔釜C_4质量分数为99.99%;低压塔理论板数为20,回流比为1.2,进料位置为第9块塔板,塔釜甲醇质量分数为99.99%。与传统萃取精馏相比,变压精馏能耗稍高,但无需引入其他组分。  相似文献   

5.
使用Aspen Batch Distillation模拟软件对环己烷-1,2-二甲酸二异辛酯(DEHCH)和邻苯二甲酸二辛酯(DOP)分离的减压间歇精馏实验进行模拟,并通过模拟结果与实验结果的对比,确定使用WILS-RK物性方法是合适的。然后使用Aspen Plus对双塔连续减压精馏进行模拟,得出当第一塔的塔板数为65,进料位置为第37块板,回流比为19.51,第二塔的塔板数为29,进料位置为第18块板,回流比为0.7987时,产品的DOP含量小于20 mg/kg。这对DEHCH生产的工艺设计具有一定的指导作用。  相似文献   

6.
谢萍  翁居轼  冯晖 《广东化工》2012,39(17):168-170
文章利用Aspen Plus化工模拟软件中的严格计算法RadFrac单元操作模块对椰子油脂肪酸进行了连续减压精馏分离模拟。考察了塔板数、回流比、进料位置对分离效果的影响。结果表明:采用两个精馏塔B1塔和B2塔串联操作,操作压强为2500 Pa(绝压),原料进料质量流率20 kg/h,B1塔理论板数为15,第8块塔板进料,回流比为2(体积比),塔顶可得到产物辛酸的质量流率为8.675 kg/h,质量分数可达98.58%及回收率可达99.83%。塔底物料经B2进一步分离,B2塔板数为15,第9块塔板进料,回流比为1,塔顶可得到产物癸酸的质量流率为10.86 kg/h,质量分数为99.79%及回收率为98.81%。模拟结果对实验研究及工业化生产具有指导意义。  相似文献   

7.
以提高生物丁醇精馏工艺中醪塔塔顶丁醇质量分数为目的,采用Aspen plus流程模拟软件考察了醪塔理论塔板数、进料板位置、回流比对塔顶丁醇质量分数的影响。通过模拟发现随着醪塔理论塔板数的增加,塔顶馏出物中丁醇质量分数迅速增加。随着醪塔进料板位置的提高,塔顶馏出物中丁醇质量分数先增加,随后下降。随着醪塔质量回流比的下降,塔顶丁醇质量分数逐渐下降。醪塔较优的操作条件为:理论塔板数40块,第20块塔板进料,回流比为1,此时塔顶丁醇质量分数为50%。本文的模拟结果与文献和实际运行工况相吻合。  相似文献   

8.
王剑舟 《浙江化工》2012,43(5):29-33
以AspenPlus软件为平台,对氨蒸馏工艺的蒸氨塔进行了模拟计算。通过对塔板数、进料位置、回流比与进料热状态的模拟,研究了各参数的影响特点。认为塔板数宜取大一些,进料位置靠近塔下端有利,回流比的选择应首先考虑满足产品质量,进料温度接近泡点为佳。确定塔板数8,在第6块塔板处进料,进料温度100℃,回流比1,灵敏板为第7块塔板,得到塔顶液氨产品氨摩尔浓度〉99.5%,塔底残留液氨摩尔浓度〈5%,满足设计规定。  相似文献   

9.
本课题选用共沸精馏的方法,经过多种溶剂筛选,选出正己烷作为共沸剂,利用Aspen Plus模拟软件中NRTL活度方程作为模型,对流程反应进行了模拟计算。辨析了理论塔板数、进料位置和回流比等单一变量对塔釜产物产率的影响。研究结果表明,当塔1的进料位置和理论塔板数为20和21,回流比为1.75时,水的分离率可达到1,当塔2的进料位置和理论塔板数分别为5和37时,塔釜吡啶分离率可达99.98%。  相似文献   

10.
采用常压-加压双塔精馏工艺对四氢呋喃-水混合物进行分离。运用Aspen Plus软件,选用NRTL-RK模型为物性计算方法,在保证四氢呋喃分离纯度不低于99.7%(w)的前提下,以再沸器热负荷为指标,对精馏系统的理论塔板数、回流比、进料位置和馏出比进行了模拟计算与优化。最佳工艺条件为:常压塔理论塔板数为12,回流比为1.767,进料位置为9,馏出比为0.695 0;高压塔理论塔板数为19,回流比为1.6,进料位置为13,馏出比为0.553 1。  相似文献   

11.
利用Aspen Plus模拟软件对含盐乙腈废水采用双塔精馏流程进行分离模拟和优化。进料为100 kg/h,选择ENRTL-RK方程,模拟结果为:对于1#塔,理论塔板数为15块,进料位置为第7块,回流比2,操作压力0.140×10~5~0.148×10~5 Pa;对于2#塔,理论塔板数8块,进料位置为第5块,回流比2,操作压力0.135×10~5~0.145×10~5 Pa。利用灵敏度分析分析了回流比、进料位置、采出量对塔进行了优化,对于1#塔,进料位置第7块,回流比1.5,采出量25 kg/h;对于2#塔,进料位置第4块,回流比1.5,采出量10 kg/h。  相似文献   

12.
采用PRO/Ⅱ流程模拟软件、选用胺工艺包对某厂溶剂再生系统进行模拟,重点分析了再生塔进料位置、进料温度、操作压力及回流温度对系统能耗的影响,并得到优化的工艺操作参数:进料位置为第3块塔板,进料温度98℃,操作压力0.08 MPa(G),回流温度40℃。优化调整后,再生塔塔顶冷凝器和塔底再沸器负荷较模拟前下降了0.49 MW。  相似文献   

13.
采用Aspen Plus化工流程模拟软件,通过NRTL热力学模型,分别进行苯和乙醇混合物的萃取精馏和变压精馏分离模拟研究。萃取精馏采用丙三醇为萃取剂,萃取精馏塔以33为理论塔板数、28为混合物进料位置、2为萃取剂进料位置、1.1为回流比、3.0为溶剂比(萃取剂用量与混合物进料量比值);溶剂回收塔以5为理论塔板数、3为进料位置、1.0为回流比时,分离得到苯和乙醇的质量分数均为99.62%。变压精馏由常压塔(101.325 kPa)和高压塔(520 kPa)串联而成,常压塔以18为理论塔板数、8为进料位置、3.0为回流比;高压塔以16为理论塔板数、10为进料位置、3.0为回流比时,可得到乙醇和苯质量分数分别为99.52%和99.01%。  相似文献   

14.
陈卓  张治青  王伟  刘芬  张娟娟 《粘接》2023,(9):115-118
设计了一种用于处理乙酸仲丁酯副产物回收工业级乙酸仲丁酯的新工艺,并应用Aspen软件对该工艺中共沸精馏塔的理论塔板数、回流比、共沸剂的量、进料位置及进料温度和甲醇回收塔的理论塔板数、回流比及进料位置等工艺参数进行灵敏度优化与分析。最终优化后的模拟结果为:共沸精馏塔处理负荷按2.4 t/h计时,其塔板数为54块,塔顶的回流比为10,共沸剂进料量为1.8 t/h,进料位置为第30块板,进料温度为40℃,塔釜乙酸仲丁酯纯度99.0%达到工业级;与乙酸仲丁酯共沸精馏塔配套负荷的甲醇回收塔,理论板数为24块,塔顶的回流比为8,原料液进料为第20块板,甲醇纯度达到96%以上,甲醇含水量小于0.15%,达到工业一等品质量要求。经济效益分析的结果表明本工艺具有良好的经济效益。  相似文献   

15.
通过气液平衡实验和Aspen Plus模拟软件对萃取精馏分离碳酸二甲酯和甲醇共沸体系的可行性进行了研究。实验和模拟结果表明:乙二醇作为溶剂能有效地改变体系的相对挥发度,UNIFAC模型能够对萃取精馏混合物系相平衡行为进行较准确的描述;通过改变原料进料位置、溶剂比、回流比和溶剂进料位置等操作参数对该体系的分离进行了模拟,得到了可行的分离条件:理论塔板数为30,原料进料位置为第20块塔板,溶剂进料位置为第3块塔板,溶剂比为1.5,回流比为2。实验值与模拟值吻合良好,说明了模拟的可靠性。  相似文献   

16.
采用萃取精馏工艺对甲醇和丙酸甲酯二元共沸物进行分离,筛选出以苯酚为萃取剂,借助Aspen Plus软件对该过程进行模拟研究,通过单因素优化详细考察了两塔的理论板数、进料位置、回流比以及溶剂比等工艺参数对塔顶产品质量分数和再沸器能耗的影响,确定了较优的工艺参数:萃取精馏塔理论板数32块,待分离原料进料位置第16块,萃取剂进料位置第6块,回流比为1.4,溶剂比为1.3,塔顶甲醇产品质量分数为99.9%;溶剂回收塔理论塔板数24,进料位置第6块,回流比为1.3,塔顶丙酸甲酯产品质量分数为99.9%。在上述模拟优化基础上,进一步通过实验验证了萃取精馏工艺的可行性。最后对某公司5 600 t/a的丙酸甲酯和甲醇混合液进行工程设计,为该二元共沸物的分离提供依据。  相似文献   

17.
利用Aspen Plus模拟软件对完全热集成变压精馏分离甲酸和水的过程进行了模拟,选用NRTL-HOC物性计算模型,模型的二元交互作用参数通过实验数据进行回归。在完全热集成下,分析了理论板数、回流比及进料位置对产品质量分数和塔釜能耗的影响。确定了较佳工艺条件:减压塔理论板数为34,回流比为7,原料和循环物料进料位置分别为第6和第14块塔板,塔顶甲酸质量分数为0.991;常压塔理论板数为32,回流比为8.6,进料位置为第17块塔板,塔顶水质量分数为0.994。与传统变压精馏比较,完全热集成变压精馏降低加热蒸汽能耗48.6%,冷凝水能耗48.9%,且无需附加再沸器或冷凝器。通过间歇变压精馏实验,验证了工艺的可行性。  相似文献   

18.
以甲醇-乙醇精馏为模拟对象,用aspen plus在NRTL物性下,对精馏塔进行了简捷设计和严格核算,并对塔板数,进料位置,进料温度做了灵敏度分析。最后得出了进料温度25℃,操作压力0.1 MPa,理论板数40,进料位置第28块板,回流比7.1时,塔顶甲醇含量高达99.99%,塔底乙醇含量可达99.4%。  相似文献   

19.
采用精馏的方法回收丙酰氯联产苯甲醛工艺中低含量的丙酰氯,通过Aspen Plus模拟软件对该工艺进行模拟,在常压条件下,考察了回流比、塔板数、进料位置、产品采出率对精馏提纯的影响。优化的丙酰氯回收参数为:回流比为10,塔板数为11,进料塔板数为第6块,塔顶采出率为2.0kg/hr,在此操作条件下,精馏所得丙酰氯的纯度可达99.9%。  相似文献   

20.
采用萃取精馏的方法分离乙酸乙酯和丁酮共沸物系。选取乙二醇作为萃取剂,利用流程模拟软件Aspen Plus对流程进行模拟,分析不同萃取剂进料量、塔板数、回流比、进料位置等参数对产品质量分数及热负荷的影响。通过模拟发现,当乙二醇进料量为500 kg/h、萃取精馏塔塔板数为30、质量回流比为0. 45、原料进料位置为17块板、萃取剂进料位置为5块板,溶剂回收塔塔板数为10、质量回流比为0. 5、进料位置为第4块板时,可得到质量分数为99. 91%的乙酸乙酯及质量分数为99. 60%的丁酮。通过间歇萃取精馏实验对萃取精馏过程进行验证,发现萃取精馏塔塔顶可得到高达质量分数为98%的乙酸乙酯,证明了模拟结果的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号