首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A joint field/circuit model is proposed in this paper to characterize a class of line-to-ring coupling structures for design and optimization of microstrip dual-mode filters and ring resonator circuits. The generic model is derived from field theory and presented in terms of circuit elements by applying a newly developed numerical deembedding technique called “short-open calibration” in a deterministic method-of-moments scheme. It provides a new design strategy for characterizing and optimizing electrical performance of the line-to-ring coupling structures. Such three-port topologies are explicitly formulated by using an equivalent network having circuit elements calculated by the proposed joint field/circuit model. Three microstrip tightly coupling geometries and their related ring resonators are studied with the extracted J-inverter susceptance parameters. Experiments are performed to validate the joint model and also show coupling characteristics of the three types of line-to-ring circuit for the design of ring resonators and dual-mode filters. With this new technique, an optimized microstrip dual-mode filter is successfully designed and the prediction agrees well with our measurements  相似文献   

2.
The progress of numerical techniques now permit us to analyze rigorously complex devices such as dual-mode cavity multipole filters or planar passive elements for coplanar monolithic microwave integrated circuits (MMICs). In this paper, we describe a rigorous design of dielectric resonator (DR) filters applying the finite-element method (FEM). We first present a dual mode coupling technique which replaces classical DRs, coupling, and tuning screws, which are commonly used in dual-mode filters, by slotted DRs. Next, a new theoretical analysis based on the contribution to the dual-mode filter response of the first DR hybrid mode and of higher order modes is described. This analysis can be applied to any type of microwave dual-mode filter. It allows us to define a procedure which explains the presence and controls the position of the two transmission zeros in the filter responses. In this paper, this procedure has been applied to improve filtering performances of a dual-mode DR filter. Finally, a synthesis method is developed to rigorously design for the first time, a four- and an eight-pole slotted DR elliptic filters. The experimental results were obtained with no tuning and the theoretical ones show good agreement  相似文献   

3.
In this paper, we report on the results of an investigation into dual-mode operation of microstrip triangular patch resonators and their applications for designing dual-mode bandpass filters. It has been found theoretically that the dual modes can result from the rotation and superposition of a fundamental mode. The characteristics of the dual modes and their mode splitting are described. The applications of this new type of dual-mode microstrip patch resonator in the design of microwave planar filter are presented. A circuit model for operation of this type of filter is proposed. Two- and four-pole filters of this type are demonstrated for the first time. Both theoretical and experimental results are presented.  相似文献   

4.
5.
This article presents a dual-mode resonator developed from a hairpin resonator with a reactive perturbation tapped at the mid-point. The dual-mode resonance characteristics are investigated intensive under both inductive and capacitive perturbations. Using this resonator, a method of synthesising the filter is also developed to determine the circuit layout directly according to the specified filter characteristics. Moreover, to improve the filter's performance, cross-coupling technique to realise quasi-elliptic responses is also discussed for both types of perturbations. Finally, two quasi-elliptic dual-mode filters were designed, fabricated and measured to verify the proposed theory.  相似文献   

6.
A novel microwave dual-mode elliptic-function bandpass filter with one coupling gap structure is proposed. This filter has a 4.7% bandwidth at 1.805 GHz with 1.73 dB insertion loss. The filter provides less field perturbation of the ring resonator than conventional filters. Without the output coupling gap between the feed line and the ring resonator, a low insertion loss has been obtained. This compact, high performance filter is useful for mobile and personal communication systems  相似文献   

7.
根据传统的方形贴片双模滤波器,提出了一种新颖的带有两个切角的平面双模带通滤波器结构.该结构使用单个贴片谐振器并且没有耦合缝隙,通带两端各有一个衰减极点,有效减小了滤波器的辐射损耗.对该滤波器结构进行改进,又提出了一种带有两个相互正交、长度不等槽线的双模椭圆函数带通滤波器结构.该滤波器在中心频率1.8GHz处,回波损耗达到31.53 dB,通带内最小插损达到0.01 dB,3 dB相对带宽为19.44%.采用Ansotf公司的En-sem ble 8.0仿真软件进行的仿真研究.仿真结果表明该结构可以更加有效地减小辐射损耗,增加带宽,且体积比传统滤波器减小了约40%,有利于小型化.  相似文献   

8.
In this letter, a novel circular open-loop resonator is presented. The field patterns of this type of dual-mode resonator are investigated using full-wave electromagnetic simulations. The applications of the dual-mode resonator as bandpass filters are proposed. A coupling and routing scheme is presented to model the operations of these filters. Advantages of using this type of filter are not only its low insertion loss, but also its controllable transmission zeros. Both simulated and measured results are presented.  相似文献   

9.
A novel microwave dual-mode quasi-elliptic-function bandpass filter structure has been designed and fabricated. The filter uses L-shaped coupling arms for enhanced coupling and dual-mode excitation. The effects of varying the length of tuning stubs and gap size between tuning stubs and ring resonator have been studied. Filters using multiple cascaded ring resonators with high rejection band are presented. The new filters have been verified by simulation and measurement with good agreement  相似文献   

10.
Compact bandpass filters are being developed using Mobius wire-loaded cavity resonators. Initial results on tuned filters indicate that excellent filter characteristics can be attained in devices that are significantly smaller than traditional wire-loaded cavity technologies. A novel quad-mode Mobius resonator is presented which occupies the same volume as a dual-mode Mobius resonator. A four-pole bandpass filter is demonstrated using a single quad-mode Mobius resonator. Precisely controlled dielectric loading of dual-mode Mobius wire resonators has been implemented to realize bandpass filters. Two-pole and four-pole bandpass filters are demonstrated using one and two dual-mode dielectric-loaded Mobius resonators, respectively  相似文献   

11.
A bandpass filter (BPF) design using a dual-mode microstrip triangular loop resonator is presented for the first time. The circuit produces frequency responses with one real finite frequency transmission zero and one imaginary finite frequency zero on either side of the passband. Depending on the perturbation arrangement, the nature of the coupling between degenerate modes causes the zeros to exchange their axis locations from real to imaginary and from imaginary to real while keeping their magnitude. This behavior results in frequency responses that are suitable for applications with asymmetrical requirements. Results show 8% bandwidth filters with insertion loss ranging from 0.82 dB to 1.4dB at 10 GHz. Advantages in size reduction and design flexibility are demonstrated when the triangular loop is compared to other dual-mode resonators.  相似文献   

12.
Computer-Aided Filter Alignment and Diagnosis   总被引:1,自引:0,他引:1  
The cavity resonant frequencies and coupling values of a wide range of bandpass filters, band-reject filters, and equalizers have been determined in situ by computer-adjusting analytic models to fit the scattering parameters measured on an automatic network analyzer. A higher order mode elliptic filter, a dual-mode quasi-elliptic filter, and a dual-mode band-reject filter are presented as examples. The general relationships between mechanical dimensions and circuit parameters are discussed. The circuit adjustment procedure is outlined, and equations for the sensitivity coefficients of several element types are tabulated.  相似文献   

13.
Two new planar integrated electromagnetic interference (EMI) filter structures that reduce the filter volume and that are based on standard printed circuit board (PCB) process technology are presented in this paper. First, a passive integrated EMI filter is presented, which results in a volume reduction of 24% compared to the discrete solution. However, this filter requires a planar ferrite core for the common-mode inductor. In order to eliminate the ferrite core and reduce the filter volume further ($-$ 40% versus discrete filter), a passive integrated structure is combined with an active EMI filtering circuit. The transfer function, the volume, and the losses of the discrete and the two integrated filters, which are designed for a 600 W power-factor-corrected converter, are compared.   相似文献   

14.
All-planar dual-mode inductive asymmetric filters utilizing new planar microstrip to dielectric-loaded rectangular waveguide transitions at Ka-band were presented and built in this work. The conventional, three-dimensional metallic rectangular waveguide dual-mode filters can be implemented into mature PCB technology with a much easier and lower-cost fabrication process on the basis of the all-planar feature of the transition. This work demonstrates two Ka-band filter examples with center frequency at 31 GHz and bandwidth at 1 GHz and 2 GHz. The measured minimum insertion loss of each case was, respectively, 2.68 and 1.12 dB, with greater than 10 dB return loss in the passband. Moreover, the measured side-band attenuation (near passband) is larger than 30 dB due to the transmission zeros at each side of the passband.  相似文献   

15.
A novel type of dual-mode microstrip bandpass filter using degenerate modes of a dual-mode microstrip square loop resonator with capacitively loaded open-loop arms is proposed. Such a dual-mode bandpass filter with a 0.75% bandwidth at the center frequency of 1.603 GHz is designed and fabricated to demonstrate the design of reduced-size microstrip filters. It is shown that the proposed filter has a size reduction of about 59% at the same center frequency, as compared with the dual-mode bandpass filters such as microstrip patch, cross-slotted patch, square loop and ring resonator filter.  相似文献   

16.
周春霞  夏侯海  季鲁  何明  方兰  阎少林 《电子学报》2011,39(6):1364-1367
本文报道一种利用谐振器中缺口位置设计双模带通滤波器的新方法.用这种方法既可以实现具有一对传输零点的双模带通滤波器,也可以实现无传输零点的双模带通滤波器.通过分析缺口位置对谐振器内电场模式分布的影响,建立了双模滤波器的拓扑结构图.利用全波仿真软件,基于不同的缺口位置设计了中心频率为2.05GHz,带宽为100MHz的两种...  相似文献   

17.
A new compact millimeter-wave dual-mode ring resonator bandpass filter is proposed. This filter has a 15% bandwidth at 58 GHz with 3.4 dB insertion loss. Input/output lines and ring resonator are directly connected to obtain tight coupling, and an open-end stub is inserted for dual-mode operation. This filter is fabricated on a GaAs wafer by using MEMS technology and can be applied for the millimeter- wave SoC.  相似文献   

18.
A periodic stepped-impedance ring resonator (PSIRR) is proposed to design dual-mode bandpass filters with a miniaturized area and desirable upper stopband characteristics. Design parameters of a PSIRR include impedance ratio R of the hi-Z to low-Z sections, their lengths, and number of impedance steps 2N. The resonant characteristics of PSIRRs with various N and R values are investigated by both the transmission-line theory and electromagnetic simulation. Proper choice of the above parameters leads to an optimal reduction of circuit area and extension of upper rejection bandwidth. Two extra transmission zeros exist in the upper stopband and are tunable via changing the arm lengths of the line-to-ring coupling structure. Realized by the standard microstrip technology, the dual-mode PSIRR bandpass filter has not only the first spurious response at higher than 3.7/spl times/ the passband frequency, but also an area reduction of better than 60% against a conventional ring filter. Experimental results of several fabricated circuits validate the analysis and theoretical prediction.  相似文献   

19.
基于Mason模型,建立了微声薄膜耦合谐振滤波器的等效电路,实现了滤波器的快速仿真设计。将耦合谐振滤波器与梯形结构微声薄膜滤波器级联,改善了滤波器的矩形度、带外抑制等特性,并通过优化设计,提高了级联滤波器的相位线性度。  相似文献   

20.
New designs of planar three-resonator bandpass filters with cross coupling having a large variety of frequency characteristics are considered. In addition to better one-sided selectivity, such filters implement symmetric amplitude–frequency characteristics with an attenuation pole at each side of the passband. These filters can also have constant delay time in the passband. Concatenation of the proposed three-resonator filters leads to multiresonator filters with high selectivity determined by two attenuation poles at each side of the passband. It is found that the type of connection of the middle resonator in the circuit of a three-resonator filter with cross coupling results in substantial differences in amplitude–frequency characteristics. The results of modeling of different frequency characteristics are presented. It is shown that filters have small dimensions, which are comparable to overall dimensions of microwave ceramic filters. For example, dimensions of a three-resonator stripline filter designed for a frequency of 1.9 GHz are 9.4 × 5 × 2 mm for the permittivity of the filter material εr = 92 and dimensions of a six-resonator filter are 10 × 9.4 × 2 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号