首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
The economic performance of an industrial scale semi-batch reactor for biodiesel production via transesterification of used vegetable oils is investigated by simulation using nonlinear model predictive control (NMPC) technology. The objective is to produce biodiesel compliant to the biodiesel standards at the minimum costs. A first-principle model is formulated to describe the dynamics of the reactor mixture temperature and composition. The feed oil and mixture composition are characterized using a pseudo-component approach, and the thermodynamic properties are estimated from group contribution methods. The dynamic model is used by the NMPC framework to predict the optimal control profiles, where a multiple shooting based dynamic optimization problem is solved at every sampling time. Simulation results with the economic performance of an industrial scale semi-batch reactor are presented for control configurations manipulating the methanol feed flow rate and the heat duty.  相似文献   

2.
This paper presents a multivariable nonlinear model predictive control (NMPC) scheme for the regulation of a low-density polyethylene (LDPE) autoclave reactor. A detailed mechanistic process model developed previously was used to describe the dynamics of the LDPE reactor and the properties of the polymer product. Closed-loop simulations are used to demonstrate the disturbance rejection and tracking performance of the NMPC algorithm for control of reactor temperature and weight-averaged molecular weight (WAMW). In addition, the effect of parametric uncertainty in the kinetic rate constants of the LDPE reactor model on closed-loop performance is discussed. The unscented Kalman filtering (UKF) algorithm is employed to estimate plant states and disturbances. All control simulations were performed under conditions of noisy process measurements and structural plant–model mismatch. Where appropriate, the performance of the NMPC algorithm is contrasted with that of linear model predictive control (LMPC). It is shown that for this application the closed-loop performance of the UKF based NMPC scheme is very good and is superior to that of the linear predictive controller.  相似文献   

3.
This paper describes the application of nonlinear model predictive control (NMPC) to the temperature control of a semi-batch chemical reactor equipped with a multi-fluid heating/cooling system. The strategy of the nonlinear control system is based on a constrained optimisation problem, which is solved repeatedly on-line by a step-wise integration of a nonlinear dynamic model and optimisation strategy. A supervisory control routine has been developed, based on the same nonlinear dynamic model, to handle automatically the fluid changeovers. Both NMPC and supervisory control have been implemented on a PC and applied to a 16 l batch reactor pilot plant. Experiments illustrate the feasibility of such a procedure involving predictive control and supervisory control.  相似文献   

4.
讨论了前馈广义分散控制系统的真镇定问题,给出了前馈广义分散控制系统能被贫 散正常动态补偿器真镇定的充要条件,即该系统不存在不稳定的分散有穷固定模和分散脉冲 固定模,为真镇定广义系统的分散正常动态补偿器的设计奠定了基础.  相似文献   

5.
In this paper, design and control of a realistic coupled reactor/column process to produce ethyl acetate is studied. The process design is more complicated because the ethyl acetate product is neither the lightest nor the heaviest component in the system. A search procedure is proposed to obtain the optimum process design and operating condition of this process. The optimum process design is the one that minimize the Total Annual Cost (TAC) of this process while satisfying the stringent product impurity specifications. The optimum overall process design includes a continuous-stirred tank reactor (CSTR) coupled with a rectifier, a decanter, another stripper, and a recycle stream. After the process design is established, the next step is to use dynamic simulation to test the appropriate control strategy for this process. Sensitivity analysis is performed to obtain the suitable temperature control points for the columns. The proposed control strategy is very simple containing only one temperature control loop in each column. This recommended simpler control strategy uses the ratio of acetic acid feed rate to ethanol feed rate to control the 5th stage temperature of the rectifier and uses the stripper reboiler duty to control the 5th stage temperature of the stripper. The proposed control strategy does not need any on-line composition measurements and can properly hold product purity in spite of feed flow rate and feed composition disturbances. For small deviations of the product impurity compositions during disturbances, a slow cascade outer composition loop structure can be implemented using off-line composition measurements from the quality lab.  相似文献   

6.
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.  相似文献   

7.
A plant-wide control strategy based on integrating linear model predictive control (LMPC) and nonlinear model predictive control (NMPC) is proposed. The hybrid method is applicable to plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems that interact via mass and energy flows. LMPC is applied to the linear subsystems and NMPC is applied to the nonlinear subsystems. A simple controller coordination strategy that counteracts interaction effects is proposed for the case of one linear subsystem and one nonlinear subsystem. A reactor/separator process with recycle is used to compare the hybrid method to conventional LMPC and NMPC techniques.  相似文献   

8.
This paper addresses the problem of decentralized tube‐based nonlinear model predictive control (NMPC) for a general class of uncertain nonlinear continuous‐time multiagent systems with additive and bounded disturbance. In particular, the problem of robust navigation of a multiagent system to predefined states of the workspace while using only local information is addressed under certain distance and control input constraints. We propose a decentralized feedback control protocol that consists of two terms: a nominal control input, which is computed online and is the outcome of a decentralized finite horizon optimal control problem that each agent solves at every sampling time, for its nominal system dynamics; and an additive state‐feedback law which is computed offline and guarantees that the real trajectories of each agent will belong to a hypertube centered along the nominal trajectory, for all times. The volume of the hypertube depends on the upper bound of the disturbances as well as the bounds of the derivatives of the dynamics. In addition, by introducing certain distance constraints, the proposed scheme guarantees that the initially connected agents remain connected for all times. Under standard assumptions that arise in nominal NMPC schemes, controllability assumptions, communication capabilities between the agents, it is guaranteed that the multiagent system is input‐to‐state stable with respect to the disturbances, for all initial conditions satisfying the state constraints. Simulation results verify the correctness of the proposed framework.  相似文献   

9.
《Journal of Process Control》2014,24(8):1260-1272
This study adapts the advanced step NMPC framework to Economic NMPC. Here, sufficient conditions for nominal stability are derived for NMPC controllers that incorporate economic stage costs with appropriate regularization. To guarantee these conditions, we derive a constructive strategy to calculate the regularization term directly. Moreover, we extend the sensitivity components in the advanced step NMPC framework to consider a rigorous path-following algorithm. This approach accounts for active set changes and allows much weaker constraint qualifications. Moreover, using an ℓ1 formulation of the NMPC problem satisfies these constraint qualifications and allows more reliable solution of the moving horizon optimization problem, even in the presence of noise. Finally, all of these concepts are demonstrated on a detailed case study with a continuously stirred tank reactor.  相似文献   

10.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

11.
Nonlinear model predictive control (NMPC) has gained widespread attention due to its ability to handle variable bounds and deal with multi-input, multi-output systems. However, it is susceptible to computational delay, especially when the solution time of the nonlinear programming (NLP) problem exceeds the sampling time. In this paper we propose a fast NMPC method based on NLP sensitivity, called advanced-multi-step NMPC (amsNMPC). Two variants of this method are developed, the parallel approach and the serial approach. For the amsNMPC method, NLP problems are solved in background multiple sampling times in advance, and manipulated variables are updated on-line when the actual states are available. We present case studies about a continuous stirred tank reactor (CSTR) and a distillation column to show the performance of amsNMPC. Nominal stability properties are also analyzed.  相似文献   

12.
This study compares PI and MPC controls via a computer simulation for a gas recovery unit (GRU), which consists of three distillation columns operated in series: a de-ethanizer, a depropanizer and a debutanizer. In addition, the de-ethanizer feed is preheated by the bottoms product from the de-ethanizer, which causes additional process coupling. Rigorous models are developed for the columns including column pressure dynamics and heat transfer dynamics. The process is a highly coupled system and has interactive constraints that determine the feasible operating regions. A decentralized PI control system with override controls for the constraints was designed and implemented on the GRU simulator and was compared with an industrial MPC controller. The MPC controller was observed to outperform the decentralized control system due to its multivariable constraint control capability. Since the simulator is available to other university researchers, it can serve as a challenge problem for multivariable control and identification. Three MPC controllers with different strategies for controlling the bottom level of the first column were implemented on the GRU process. The first MPC controller does not directly control the level, the second one moves the setpoint to the PI level controller, and the third one controls the level directly by manipulating the flow. The results show that including level into the MPC controller improves composition control for cases in which the manipulated variable for the level control has a significant impact on compositions.  相似文献   

13.
Two geometrical formation schemes that allow the definition of any desired three-dimensional formation mesh for a group of helicopters are presented. Each formation scheme, which defines the leader–follower geometry of the formation mesh, has four parameters. These formation parameters are directly used as the output of decentralized controllers that independently control each helicopter in the group. The decentralized controllers are designed using a non-iterative Nonlinear Model Predictive Control (NMPC) method. The Continuation method is used for solving, in real-time, for future control actions that minimize a NMPC cost function. It is shown by analyzing the number of floating point operations per calculation cycle that the calculation load of the NMPC method for this application is quite manageable for today’s industrial embedded computers. Simulations show that the formation schemes along with the NMPC controller can initialize and keep the formation of a group of helicopters even in the presence of bounded parameter uncertainty and environmental disturbance.  相似文献   

14.
In this work, the realization of an online optimizing control scheme for an industrial semi-batch polymerization reactor is discussed in detail. The goal of the work is the automatic minimization of the duration of the batch without violating the tight constraints for the product specification which translate into stringent temperature control requirements for a highly exothermic reaction. Crucial factors for a successful industrial implementation of the control scheme are the development and the validation of a process model that is suitable for process optimization purposes and the estimation of unmeasured process states and the online compensation of model uncertainties. Two implementations are proposed, a direct online optimizing control scheme and a simplified scheme that combines a model-predictive temperature controller and a monomer feed controller that steers the cooling power to a predefined value in a cascaded fashion. We show by simulation results with a validated process model that both schemes achieve the goals of tight temperature control and reduction of the batch time. The performance of the NMPC controller is superior, on the other hand the cascaded scheme could be directly implemented into the DCS of the plant and is in daily operation while the online optimizing scheme requires an additional computer and is currently in the test phase.  相似文献   

15.
In this paper, a novel hierarchical multirate control scheme for nonlinear discrete‐time systems is presented, consisting of a robust nonlinear model predictive controller (NMPC) and a multirate sliding mode disturbance compensator (MSMDC). The proposed MSMDC acts at a faster rate than the NMPC in order to keep the system as close as possible to the nominal trajectory predicted by NMPC despite model uncertainties and external disturbances. The a priori disturbance compensation turns out to be very useful in order to improve the robustness of the NMPC controller. A dynamic input allocation between MSMDC and NMPC allows to maximize the benefits of the proposed scheme that unites the advantages of sliding mode control (strong reduction of matched disturbances, low computational burden) to those of NMPC (optimality, constraints handling). Sufficient conditions required to guarantee input‐to‐state stability and constraints satisfaction by the overall scheme are also provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The paper illustrates the benefits of nonlinear model predictive control (NMPC) for the setpoint tracking control of an industrial batch polymerization reactor. Real-time feasibility of the on-line optimization problem from the NMPC is achieved using an efficient multiple shooting algorithm. A real-time formulation of the NMPC that takes computational delay into account is described. The control relevant model for the NMPC is derived from the complex-first principles model and is fitted to the experimental data using maximum likelihood estimation. A parameter adaptive extended Kalman filter (PAEKF) is used for state estimation and on-line model adaptation. The performance of the NMPC implementation is assessed via simulation and experimental results.  相似文献   

17.
Hydrocracking is a crucial refinery process in which heavy hydrocarbons are converted to more valuable, low-molecular weight products. Hydrocracking plants operate with large throughputs and varying feedstocks. In addition the product specifications change due to varying economic and market conditions. In such a dynamic operating environment, the potential gains of real-time optimization (RTO) and control are quite high. At the same time, real-time optimization of hydrocracking plants is a challenging task. A complex network of reactions, which are difficult to characterize, takes place in the hydrocracker. The reactor effluent affects the operation of the fractionator downstream and the properties of the final products. In this paper, a lumped first-principles reactor model and an empirical fractionation model are used to predict the product distribution and properties on-line. Both models have been built and validated using industrial data. A cascaded model predictive control (MPC) structure is developed in order to operate both the reactor and fractionation column at maximum profit. In this cascade structure, reactor and fractionation units are controlled by local decentralized MPC controllers whose set-points are manipulated by a supervisory MPC controller. The coordinating action of the supervisory MPC controller accomplishes the transition between different optimum operating conditions and helps to reject disturbances without violating any constraints. Simulations illustrate the applicability of the proposed method on the industrial process.  相似文献   

18.
基于线性矩阵不等式的不确定关联系统的分散鲁棒镇定   总被引:11,自引:0,他引:11  
应用线性矩阵不等式(LMI)方法研究不确定性关联大系统的分散便棒镇定问题。系统中不稳定项具有数值界,可不满足匹配条件。基于不确定项的表达形式,给出了其可分散状态反馈镇定的充分条件,即一组LMIs有解。在此基础上,通过求第一凸优化问题,提出了具有较小反馈增益的分散稳定化状态反馈控制律的设计方法。仿真示例说明了该方法的有效性和优越性。  相似文献   

19.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

20.
Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem faced by far in greenhouse climate control is cooling, which, for dynamical reasons, leads to natural ventilation as a standard tool. This work addresses the design of a nonlinear model predictive control (NMPC) strategy for greenhouse temperature control using natural ventilation. The NMPC strategy is based on a second-order Volterra series model identified from experimental input/output data of a greenhouse. These models, representing the simple and logical extension of convolution models, can be used to approximate the nonlinear dynamic effect of the ventilation and other environmental conditions on the greenhouse temperature. The developed NMPC is applied to a greenhouse and the control performance of the proposed strategy will be illustrated by means of experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号