首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对气固多相流动的数值模拟的方法和描述气固多相流动特性的数学模型进行了分析。通过分析和对煤粉气流流过弯管时的流动情况进行数值计算发现:采用K-ε双方程模型描述气相湍流模型,应用SIM-PLE算法计算气相速度场,然后采用FSRTSagrange法计算颗粒场特性,这是比较行之有铲的数值模拟管内气固多相流动的方法。  相似文献   

2.
本文数值模拟了煤粉旋流火焰燃烧过程,燃烧数值计算包括理论物理模型建立,数值方法两个大部分,计算模型处理了气相湍流与燃烧、气固两相流动、煤颗粒燃烧过程和辐射传热等物理化学过程,以k-ε模型模拟湍流流动;PDF法模拟气相扩散火焰燃烧;颗粒运动计算颗粒运动少颗粒湍流浓度方程模拟颗粒湍流扩散;通量法计算火焰辐射传热,煤粉颗粒复杂燃烧模型计算了颗粒尺寸、形状变化和颗粒孔隙内部燃烧、表面平度对整个颗粒的燃烧过程影响。计算获得了气相速度分布场、气相k和ε分布场、气相温度场、气相组份场和颗粒浓度场及运动过程,揭示了煤粉复合旋流燃烧特性。  相似文献   

3.
可调浓度煤粉浓淡燃烧器的数值模拟   总被引:9,自引:0,他引:9  
采用包括脉动频谱随机轨道模型等气固多相流模型,对新型撞击可调浓度煤粉浓淡燃烧器内部的气相固多相流动进行了数值模拟。研究来流速度,撞击块高度,隔板位置等因素对气相速度场,隔板两侧配风均匀性、颗粒浓度、浓淡分离比的影响,并和仪器模化实验进行对比,计算结果和实验吻合较好,通过分析浓淡分离过程中若干问题的机理,得到了具有工程应用价值的结论。  相似文献   

4.
三维贴体坐标系下燃烧室中两相反应流的数值模拟   总被引:4,自引:0,他引:4  
本文提供了现代航空发动机主燃烧室中三维两相燃烧流场的数值计算方法。气相场在欧拉坐标中用SLMPLE算法求解;液相场在拉格朗勒坐标系中用PSIC算法求解。本数值计算程序采用k-ε双方程湍流模型,旋涡破裂湍流燃烧模型,六通量热辐射模型,采用了三维非正交曲线坐标系,压力交错网格。  相似文献   

5.
对一种可调浓度低负荷自动稳燃及防结渣装置中撞击式分离器内的气固两相流动进行数值模拟。气相采用RNGk-ε模型,固相采用FSRT模型,数值模拟结果能较好地预报分离器后浓度分布和速度分布,对该装置的可靠性提供理论依据,同时对现场调试有一定的指导作用。  相似文献   

6.
对一种可调浓度低负荷自动稳燃及防结渣装置中撞击式分离器的内的气固两相流动进行数值模拟。气相采用RNGk-ε模型, 相采用FSRT模型,数值模拟结果能较好地预报分离器后浓度分布和速度分布,对该装置的可靠性提供理论依据,同时对现场调试有一定的指导作用。  相似文献   

7.
提出了考虑湍流-颗粒反应相互作用的颗粒随机轨道模型,以此为基础建立煤粉燃烧综合理论模型并应用于旋流燃烧室内煤粉多相湍流流动与燃烧的数值模拟.模拟结果给出了气相温度场、速度场与温度脉动均方根值分布、颗粒相温度场、速度场与表观密度场以及颗粒瞬时温度与质量随时间的变化.研究表明,考虑湍流-颗粒反应相互作用对气相与颗粒相温度场的模拟结果有一定的影响,使气相温度分布与实验数据更为接近.  相似文献   

8.
旋流煤粉多相流动与燃烧一维数学模型及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为了发展和有效地进行旋流煤粉多相流动与燃烧数值模拟,作者在多连续介质模型的框架中建立了综合考虑气-固两相旋流流动,燃烧与传热的旋流煤粉燃烧一维数学模型。应用这一模型对涡旋燃烧炉环形通道内煤粉燃烧和气体燃烧的数值计算表明,该模型可快速有效地用于模拟旋流煤粉多相流动与燃烧过程,给出炉内温度、速度与浓度分布以及燃烧效率等主要参数。  相似文献   

9.
数值模拟环形燃烧室两相反应流场   总被引:6,自引:0,他引:6  
在任意曲线坐标系下,采用一种整体分区结合法,对包扩压器和火焰筒在在内的环形燃烧室三维两相反应流进行了数值模拟。所相采用Euler方法处理,并采用标准k-ε双方程紊流模型、EBU-Arrhenius紊流燃烧模型,六通量热辐射模型;液相采用Lagrange法处理。在非交错网格体系下,气相用SIMPLE法求解,液相采用颗粒群轨道模型,并用PSIC算法对其进行数值求解,计算结果表明这种新方法是可行的。  相似文献   

10.
采用商业软件FLUENT所提供的不同湍流模型;K-ε模型、RNG K-ε模型、带旋流修正的RNG K-ε模型、Realizable K-ε模型、雷诺应力模型,对四角切向燃烧煤粉锅炉内冷态气相流动进行了数值模拟。为减小数值伪扩散对强旋流动的影响,本文采用了减小网格尺寸和提高差分模式精度等措施。通过与实验结果的对比分析,客观评价了这些模型与方法对该流动模拟效果的影响,为理论分析强旋湍流流动和对四角切向燃烧煤粉锅炉内流体流动的工程设计提供了参考依据。  相似文献   

11.
A photovoltaic (PV) generator is a nonlinear device having insolation-dependent volt-ampere characteristics. Because of its relatively high cost, the system designer is interested in optimum matching of the motor and its mechanical load to the PV generator so that maximum power is obtained during the entire operating period. However, since the maximum-power point varies with solar insolation, it is difficult to achieve an optimum matching that is valid for all insolation levels. In this paper it is shown that for maximum power, the generator current must be directly proportional to insolation. This remarkable property is utilized to achieve insolation-independent optimum matching. A shunt DC motor driving a centrifugal water pump is supplied from a PV generator via a step-up converter whose duty ratio is controlled using a current-locked feedback loop  相似文献   

12.
We study a convective heat transfer problem in a fluid-porous domain in the case of the local thermal non-equilibrium assumption (LTNE). The issue of this study is to determine appropriate boundary conditions to model heat transfer, while using models with a different number of equations: a two-temperature model in the homogeneous porous region versus a one-temperature model in the free region. To proceed, a two-step up-scaling approach is used, which has the particularity to provide closed jump relations depending on intrinsic characteristic of the interface. Thus, the use of jump or continuity conditions depend only on the interface location inside the fluid-porous transition region. The pertinence of the approach is illustrated on a 2D convective heat transfer problem considering a solid heat source in the porous medium.  相似文献   

13.
14.
A new micro-combustor configuration for a micro fuel-cell reformer integrated with a micro-evaporator is studied experimentally and computationally. The micro-combustor as a heat source is designed for a 10–15 W micro-reformer using the steam reforming method. In order to satisfy the primary requirements for designing a micro-combustor integrated with a micro-evaporator, i.e., stable burning in a small confinement and maximum heat transfer through a wall, the present micro-combustor is a simply cylinder, which is easy to fabricate, but is two-staged (expanding downstream) to control ignition and stable burning. The aspect ratio and wall thickness of the micro-combustor substantially affect ignition and thermal characteristics. For optimized design conditions, a pre-mixed micro-flame is easily ignited in the expanded second-stage combustor, moves into the smaller first-stage combustor, and finally is stabilized therein. The measured and predicted temperature distributions across the micro-combustor walls indicate that heat generated in the micro-combustor is well transferred. Thus, the present micro-combustor configuration can be applied to practical micro-reformers integrated with a micro-evaporator for use with fuel cells.  相似文献   

15.
The consequences of using a fin collector in focusing solar collectors is examined and is found to have merits.  相似文献   

16.
The bioconvection flow of an incompressible micropolar fluid containing microorganisms between two infinite stretchable parallel plates is considered. A mathematical model, with a fully coupled nonlinear system of equations describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms is presented. The governing equations are reduced to a set of nonlinear ordinary differential equations with the help of suitable transformations. The resulting nonlinear ordinary differential equations are linearized using successive linearization method, and the resulting system of linear equations is solved using the Chebyshev collocation method. The detailed analysis illustrating the influences of various physical parameters, such as the micropolar coupling number, squeezing parameter, the bioconvection Schmidt number, Prandtl numbers, Lewis number, and bioconvection Peclet number on the velocity, microrotation, temperature, concentration and motile microorganism distributions, skin friction coefficient, Nusselt number, Sherwood number, and density number of motile microorganism, is examined. The influence of the squeezing parameter is to increase the dimensionless velocities and temperature and to decrease the local Nusselt number and local Sherwood number. The density number of motile microorganism is decreasing with squeezing parameter, bioconvection Lewis number, bioconvection Peclet number, and bioconvection Schmidt number.  相似文献   

17.
An analysis is carried out for the flow characteristics of a conducting micropolar fluid. The fluid was passed in between two parallel disks of infinite radii. The novelty of the study is to consider one of the disks as porous and the other one as nonporous, and the external magnetic field is applied along the transverse direction of the flow. The flow phenomena for the polar fluid characterized by the magnetic effect in conjunction with the temperature equation reduce to a set of coupled nonlinear ordinary differential equations using the requisite transformations and nondimensionalization. An analytical approach such as the variation parameter method is employed to tackle the system efficiently. To emphasize the effect of various physical parameters contributing to the flow phenomena, that is, non-zero tangential slip, Reynolds number, Prandtl number, magnetic parameter, and material parameter on the flow profiles of axial and radial velocities, the microrotation and temperature profiles are presented graphically. To validate the simulated results, a comparison with established results is made, and it is concluded that both are in good correlation.  相似文献   

18.
An attractive path to the production of hydrogen from water is a two-step thermo chemical cycle powered by concentrated sunlight from a solar tower system. In the first process step the redox system, a ferrite coated on a monolithic honeycomb absorber, is present in its reduced form while the concentrated solar energy hits the ceramic absorber. When water vapour is fed to the honeycomb at 800 °C, oxygen is abstracted from the water molecules, bond in the redox system and hydrogen is produced. When the metal oxide system is completely oxidised it is heated up for regeneration at 1100–1200 °C in an oxygen-lean atmosphere. Under those conditions and in the second process step, oxygen is set free from the redox system, so the metal oxide is being reduced and after completion of the reaction again capable for water splitting.Since the overall process consists of two core reaction steps, which need to be carried out sequentially in a reactor unit at two different temperature steps, a special process and plant concept had to be developed enabling the continuous supply of product regardless of the alternating nature of the solar reactor operation. The challenge of the process control is to keep the two core reaction temperatures constant and to ensure regular temperature switches after completion of the individual process steps, independent of the weather conditions, like DNI fluctuation, clouds and wind speed. Also start-up, the fast switching after completion of half-cycles and the shutdown must be controlled. State of the art is the manual switching of heliostats to fulfil those control tasks.This paper describes the development and use of a system model of this process. The model consists of three main parts: the simulation of the solar flux distribution at the receiver aperture, the simulation of the temperatures in the reactor modules and the simulation of the hydrogen generation. It can be used for the analysis of the operational behaviour. The model is intended to be used in the future for the control of the whole process.  相似文献   

19.
20.
The present article examines the Sisko nanofluid flow and heat transfer through a porous medium due to a stretching cylinder using Buongiorno's model for nanofluids. Suitable similarity transformations are used to transform the governing boundary layer equations of fluid flow into nonlinear ordinary differential equations. The finite difference method is used to solve coupled nonlinear differential equations with MATLAB software. The impact of different parameters viz., the Sisko material parameter, porosity parameter, curvature parameter, thermophoresis parameter, and Brownian diffusion parameter on the velocity and temperature distribution are presented graphically. Moreover, the effect of the involved parameters on the heat transfer rate is also studied and presented through table values. It is noticed from the numerical values that the porosity parameter reduces the velocity while enhancing the temperature. The curvature parameter enhances the velocity throughout the fluid regime and reduces the temperature near the surface while enhancing the temperature far away from the surface. The study reveals that the thermophoresis and Brownian diffusion parameters that characterize the nanofluid flow reduce the wall heat transfer rate, while the curvature parameter enhances it. This investigation of wall heating/cooling has essential applications in solar porous water absorber systems, chemical engineering, metallurgy, material processing, and so forth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号