首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了解决矿井瓦斯预抽中存在的问题,提高矿井瓦斯抽采利用效率,杜绝瓦斯灾害事故发生,以新集二矿瓦斯预抽工艺为研究背景,针对矿井采掘接替紧张、煤层透气性差、瓦斯抽采率低等技术难题,提出了超高压水力割缝与水力压裂联合增透技术。基于岩石力学与流体力学理论,分析了超高压水力割缝与水力压裂联合增透机理。并采用数字模拟方法研究确定了沿槽缝延伸方向,缝槽至煤体深部依次形成破碎区、塑性区、弹性区及原岩应力区,被冲割煤体受高压水射流剪、割应力作用影响,原岩应力区向煤体深部转移,煤体渗透率增大。得出水力压裂钻孔布置在超高压水力割缝形成的塑性区范围内能够达到较好的增透效果,并设计了超高压水力割缝与水力压裂一体化联合增透技术工艺:割缝水压为95~100 MPa,旋转水尾转速为40 r/min,割缝间距为1.0~1.2 m,单刀冲割时间为12 min;水力压裂钻孔直径为95 mm,并采用100 mm的钻孔洗扩装置冲、扩钻孔。通过在新集二矿2201采区220108底板巷2号上钻场的应用结果显示:超高压水力割缝与水力压裂协同增透技术能够明显改善煤层透气性,瓦斯抽采30 d以后,协同超高压水力割缝钻孔平均瓦斯抽采纯量为普通钻孔的10.3倍;协同水力压裂钻孔平均瓦斯抽采纯量为普通钻孔的6.4倍,且能够持续保证较高流量和浓度的瓦斯抽采效果。  相似文献   

2.
针对白皎煤矿突出煤层构造应力高、透气性系数低、瓦斯抽采效果差等问题,在238底板瓦斯抽采巷对B4煤层采用了水力割缝和压裂联合增透技术,应用结果表明该技术相比水力压裂技术和普通抽采技术提高了煤层透气性,瓦斯抽采纯量较水力压裂钻孔提高了1.33倍,瓦斯体积分数是普通抽采钻孔的2.76倍,联合增透钻孔汇总瓦斯体积分数保持在30%以上且无衰减,具有良好的抽采效果。  相似文献   

3.
《煤矿机械》2017,(8):42-43
针对屯兰煤矿12507突出煤层工作面的工作面巷道掘进时期的瓦斯治理和突出防治难题,提出并试验了底抽巷穿层钻孔水力割缝压裂增透煤层技术,用以提高低透煤层的透气性系数和煤巷条带瓦斯抽采率,结果表明:(1)采取割缝(压裂)综合增透的钻孔,其瓦斯抽采的平均浓度是常规钻孔的2.86倍;(2)支管瓦斯抽采纯流量是未压裂前的2.6倍;(3)煤层残余瓦斯含量下降了3.618 m3/t;(4)割缝压裂综合作业提高了瓦斯抽采效果和抽采效率,具有明显的煤层增透效果。  相似文献   

4.
针对阳泉矿区煤层透气性低瓦斯难以抽采特点,研究提出了水力切槽及脉冲水力压裂相结合的新型煤层增透技术,该技术利用水力切割缝槽卸载钻孔周围应力并形成初始导向裂缝,采用定向脉动水力压裂致裂煤体,提高煤体渗透率和卸压增透范围,改变煤体应力场和瓦斯流动场。研究结果表明:切槽钻孔单孔瓦斯抽采累计混合量约是常规孔的10倍以上,单孔抽采混合量约是常规钻孔的20倍以上,钻孔瓦斯抽采最高浓度是常规组钻孔的2~3倍,有效提高阳泉矿区低渗煤层穿层钻孔瓦斯抽采能力,达到煤层整体卸压增透及瓦斯高效抽采的目的。  相似文献   

5.
为了提高井下低透气性煤层瓦斯抽采钻孔瓦斯抽采效果,开发了适合中等偏硬低透煤层裸眼钻孔高压稳定封孔装备,采用了本煤层定向长钻孔整体水力压裂增透技术,分析了本煤层定向长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂施工过程中压裂参数变化规律,利用压裂前后煤层全水分和钻孔瓦斯参数变化对比,综合考察和评价了水力压裂增透效果和影响范围。研究表明:压裂过程中最大注水压力24.6MPa,发生多次明显压降,最大压降5.2MPa。水力压裂增透后,煤层瓦斯日抽采纯量提高了12.70倍,百米钻孔瓦斯抽采量提高了2.67倍,压裂最大影响半径达到了 38m,平均超过30m,提高了瓦斯抽采效率。  相似文献   

6.
为了有效解决丁集矿高地应力、低透气性突出煤层煤巷条带瓦斯区域预抽效率低、预抽达标后区域验证指标仍超标的问题,在该矿1351(1)运输巷煤巷条带穿层预抽钻孔进行了超高压水力割缝卸压增透技术应用研究,利用水力割缝卸压增透原理确定了超高压水力割缝设备组成,选型配套了超高压清水泵、超高压软管、超高压旋转水尾、水力割缝钻杆、高低压转换割缝器、钻头和超高压远程操作台等超高压水力割缝设备,考察了相同孔径未割缝钻孔、割缝钻孔瓦斯涌出量及割缝钻孔瓦斯抽采量,理论研究了百米煤孔初始瓦斯涌出量、瓦斯涌出衰减系数及不同预抽时间、预抽率条件下的有效抽采半径,现场检验了顺层钻孔预抽措施单元、穿层钻孔水力冲孔措施单元、穿层钻孔水力割缝措施单元的预抽瓦斯区域防突措施效果,统计了不同措施预抽单元局部补充措施执行情况、局部措施效果,分析评价了超高压水力割缝卸压增透效果。结果表明:针对丁集矿11-2煤层工程条件选型配套的超高压水力割缝设备参数是合理的,在1351(1)运输巷煤巷对11-2煤层条带进行穿层钻孔超高压水力割缝措施卸压增透效果显著,与未增透措施相比,煤层透气性系数提高了25.9倍、113 mm孔径的穿层钻孔百米煤孔初始瓦斯涌出量提高了5.5倍、瓦斯涌出衰减系数降低了73.4%、预抽15 d和30 d达35%预抽率的钻孔间距提高了84.3%和53.0%,与穿层钻孔水力冲孔相比,煤巷条带防突局部补充措施工程量降低了50.0%、煤巷平均掘进速度增加了1倍。  相似文献   

7.
《煤矿安全》2017,(11):71-75
通过数值模拟软件分析和现场工程试验等手段,研究了水力冲孔与压裂耦合致裂增透技术对豫西"三软"煤层煤体位移、应力分布、渗透率的影响。研究结果表明,水力冲孔与压裂耦合致裂增透技术可以使水力冲孔泄煤钻孔间煤体应力降低20%以上、渗透率提高35%以上;告成矿23041下副巷(北)揭煤工作面穿层钻孔平均抽采浓度较相同瓦斯地质条件提高4.3倍,日平均抽采纯瓦斯量较相同瓦斯地质条件提高6.7倍,研究成果可推广应用于郑州矿区底板岩巷穿层钻孔预抽煤层瓦斯区域防突措施。  相似文献   

8.
赵伟伟 《煤》2020,29(6)
针对低渗高瓦斯松软煤层面临的瓦斯抽采率低的难题,提出运用顺层钻孔水力导向压裂增透技术改造煤层原始瓦斯赋存状态以提高瓦斯抽采率。理论分析了煤层水力压裂增透机理,并推导得出了距离水力压裂钻孔R处的煤体渗透率方程,分析发现压裂钻孔周围煤体渗透变化规律以及渗透率与压裂时间的关系。数值模拟研究得出常规顺层钻孔水力压裂增透半径为3 m,而运用水力割缝后进行导向水力压裂增透半径达到了6 m。现场试验表明,运用水力导向压裂增透技术能够有效提高低渗高瓦斯松软煤层的渗透性,从而提高本煤层瓦斯抽采效果。  相似文献   

9.
为了解决西南地区松软煤层所面临的瓦斯抽采难度大、消突时间长的难题,在新维煤矿石门揭穿8#突出煤层期间,通过抽采钻孔,采用单孔多次高压水力割缝形成缝槽,并同时实施中压注水实现导向性水力压裂的煤层增透方法,增加了待揭露区域煤层的透气性,缩短了预抽时间。结果表明:高压水力割缝形成缝槽为水力压裂起到一定的导向作用,水力压裂裂缝和割缝缝槽共同形成连贯塑性区;经过水力化措施后,煤层透气性提高,单孔抽采瓦斯流量平均提高2倍;单孔抽采瓦斯浓度平均提高3倍左右,实现了石门快速揭煤。  相似文献   

10.
《煤矿安全》2017,(4):9-12
为解决鱼田堡煤矿煤层透气性差,单一穿层钻孔、水力割缝等工艺后抽采效果不理想,区域防突措施实施不到位,造成较大空白带问题,在34区-350 m西抽对5~#煤层进行高压水力压裂增透技术试验。通过现场试验确定了适合鱼田堡煤矿5~#煤层的水力压裂工艺,并"反演"出注水压力理论计算公式中ps宜取值为最高泵站压力的10%~15%。水力压裂效果考察分析表明:在水力压裂有效影响范围内煤层平均含水率为原始的2.15倍,煤层平均透气性系数为原始的112倍,瓦斯平均抽采浓度为原始的2.3倍,瓦斯抽采纯量为原始的3.9倍,并通过综合分析瓦斯抽采的浓度、纯量以及含水率、透气性系数等参数得到单孔水力压裂沿煤层走向的有效影响范围为50 m左右。  相似文献   

11.
为提高低渗、高瓦斯突出煤层煤巷条带瓦斯抽采效率,实现低渗、突出煤层煤巷条带瓦斯的快速有效治理,在2130煤矿4号煤层24223运输巷开展了井下定向长钻孔水力压裂增渗技术试验研究。试验结果表明,试验区内4号煤层水力压裂影响半径为30 m,煤层透气性提高了4.59倍,缩短了瓦斯抽采时间,提高了瓦斯抽采效果。  相似文献   

12.
为研究水力冲孔造穴技术的卸压增透机制,利用受载煤体全应力—应变曲线,建立受载煤体渗透率演化模型,结合Comsol Multiphysics多物理场数值模拟软件,验证了水力冲孔造穴对煤体卸压增透的有效性。结果表明:水力冲孔造穴技术在形成半径为0.60 m的空洞后,在钻孔周围煤体内形成了半径为1.34 m的瓦斯渗透率增高区。该技术在焦煤集团九里山矿井下16051运输底抽巷开展试验,通过对普通钻区和冲孔造穴区的瓦斯抽采数据进行对比,可以看出:采取水力冲孔造穴措施后,抽采钻孔的瓦斯浓度提高了0.77倍,瓦斯抽采纯量提高了1.51倍,该措施有效地提高了煤层瓦斯抽采效率,减少了安全事故,保证了工作面的安全回采。  相似文献   

13.
针对阳泉矿区碎软低渗高突煤层开展了井下长钻孔整体水力压裂增透技术的工程试验研究,工程实现了井下一次性整体压裂煤孔段长度达307 m,单孔注入水量达1 510 m3,最大注水压力达26.09 MPa。效果检测表明钻孔压裂影响半径最大达58 m,压裂后煤层透气性系数提高了2.67倍,百米钻孔瓦斯流量衰减系数降低了55%,230 d内钻孔日抽采纯甲烷1 395~2 810 m~3,平均2 173 m~3,钻孔累计抽采纯甲烷50.86×10~4m~3,抽采瓦斯浓度为49.38%~83.70%,平均64.31%。分析认为:水力压裂能改善煤层裂隙和孔隙的连通性、降低煤层有效应力、提高煤层渗透率,注水能促进煤层瓦斯从吸附态向游离态转化,是煤层压裂后钻孔高效抽采瓦斯的关键,依据填砂堵缝压裂技术原理提出了碎软低渗煤层长钻孔整体水力压裂煤层裂隙开启、扩展和延伸机制。工程试验成果及认识可为井下长钻孔整体水力压裂增透高效抽采瓦斯提供借鉴。  相似文献   

14.
李双  赵伟  刘德成  曹阳 《中州煤炭》2020,(11):38-42
豫东地区陈四楼煤矿煤层为单一低透气性突出煤层,瓦斯预抽存在难度大、效率低的问题,严重制约了煤矿安全生产。为增加煤体透气性,提高瓦斯抽采效果,井下水力压裂是一种行之有效的措施。依据瓦斯赋存情况,在煤体瓦斯含量低于5 m3/t区域进行水力压裂增透试验,既能大幅降低钻孔工程量,加快区域治理进度,又能有效保证压裂过程中施工安全,防范压裂期间瓦斯异常涌出,引起瓦斯事故,对低瓦斯区域实现科学治理、精准施策具有重要意义,同时也能为高瓦斯区域进行压裂尝试提供借鉴。  相似文献   

15.
告成煤矿主采煤层赋存不稳定、透气性差,采取水力冲孔增透措施后,抽采过程中依然存在瓦斯流量衰减快、钻孔塌孔、堵孔的现象,瓦斯抽采效果较差。通过试验应用水力修复及二次增透技术,对抽采效果不好的钻孔进行透孔修复及二次对煤层进行增透,单孔瓦斯抽采浓度由5%提高到100%,单孔抽采量提高了200~500 m3,钻孔有效抽采时间延长了15~30 d,取得了良好的抽采效果。  相似文献   

16.
为探索低渗煤层的瓦斯抽采增产关键技术,提高瓦斯抽采效率,缩短抽采达标时间,针对南桐煤矿瓦斯治理中的难题,开展了煤矿井下水力压裂增透抽采瓦斯技术研究。研究结果表明:水力压裂可在煤层中形成一组沿最大主应力方向延伸、最小主应力方向张开的径向张性裂缝,明显提高煤层的透气性;南桐煤矿K2煤层最大破裂压力为32.0MPa,选择压力为38.0MPa的设备工况进行压裂,单孔平均压入水量400m3左右;-325m7511工作面压裂后钻孔平均每米抽采贡献量是传统工艺的49倍,减少了预抽钻孔工程量,降低了成本,提高了瓦斯抽采效果。  相似文献   

17.
李秀峰 《中州煤炭》2016,(10):27-30
针对煤层水力压裂过程中存在的压裂水压小、设备能力低、封孔质量差等问题,结合煤层具体条件,从压裂钻孔高压封孔工艺、水力压裂系统设备、现场压裂工艺等方面对鹤壁十矿水力压裂卸压增透技术进行了优化研究。现场压裂试验结果显示:压裂导致煤体卸压增透的区域达到30 m左右,煤层渗透率显著增大;压裂试验后,现场实测煤层残存瓦斯含量以及通过含量反算的残存瓦斯压力均明显要低于防突规定中的突出临界指标值;且压裂试验后,最大抽采浓度较压裂试验前增加了6.30倍,日均单钻孔抽放量增加了17.5倍,抽采效果显著改善,改进后的水力压裂工艺达到了减少施工量、提高抽采率、降低煤层突出危险性的目的。  相似文献   

18.
张志勇  刘东 《中州煤炭》2019,(10):37-40,52
为推进水力冲孔卸压增透技术的推广应用,增加煤层透气性,提高矿井瓦斯抽采效率,在陈四楼煤矿开展水力冲孔卸压增透技术试验,考察该技术的作业工效和增透效果,数据分析结果表明:试验区煤层地质条件下,冲孔水压为8~10 MPa时,每米煤孔冲煤1.4 t所需的时间约为25.3 min,水力冲孔后钻孔两个月内的平均抽采浓度提高了3倍,平均单孔抽采纯量提升了2倍左右,卸压增透效果显著,为矿井瓦斯治理技术水平的提升提供支撑。  相似文献   

19.
针对赵固二矿煤层透气性低、钻孔有效影响半径小,实施定向长钻孔代替底板岩巷进行区域瓦斯治理期间钻孔工程量大、瓦斯抽采效果不理想的问题。结合煤层赋存特征及钻孔施工情况,采用定向长钻孔整体水力压裂增透技术,理论分析了合理坐封位置、压裂参数,完成200 m煤巷条带一次整体压裂,最大泵注压力24.3 MPa、累计注水量1 613 m3。并基于煤层全水分变化,考察确定了单个钻孔压裂影响范围达到巷道两帮30 m,有效改善了煤体储层特性,提高了煤层瓦斯抽采效率。在实现定向钻孔对预抽煤巷条带可靠控制的同时,最大程度降低了钻孔工程量、缩短了瓦斯治理周期,为实现矿区“以孔代巷”及高效安全开采提供了技术支撑。  相似文献   

20.
唐强 《中州煤炭》2020,(8):23-26,32
针对观音山煤矿C5厚煤层透气性差、煤质破碎且松软、局部含水等特点,开展底板穿层钻孔高压水力扩孔自排提效应用研究。通过现场试验表明,扩孔工艺大幅提高了钻孔瓦斯自排效率;钻孔出渣速率与瓦斯自排效率在限值内正相关。研究为类似矿井高压水力扩孔提高钻孔瓦斯自排效果提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号