首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A. Ammasi 《钢铁冶炼》2016,43(3):203-213
Bentonite is the most common binder used in iron ore pelletisation owing to its good bonding properties in green and dry pellets at both ambient and elevated temperatures. However, due to its high alumina and silica content, it increases the slag volume and energy consumption in downstream processes. Organic binders may be used to replace bentonite; however, they fail to provide strength at a high temperature (700–900°C) due to poor thermal stability during pellet induration. In the present study, an organic binder Na lignosulphonate (NLS) has been used along with copper smelting slag (Cu-SS). FeO in Cu-SS provides diffusion bonding at high temperature and maintains the strength of pellets even after evaporation/burning of NLS. It also enhances recrystallisation bonding at relatively lower temperature to provide good strength. The study has been carried out with hematite ore and varying amounts of NLS and Cu-SS. Copper smelting slag (1.0%) addition with 0.5%NLS has been found to be optimum to provide very good green properties and ~300?kg/pellet cold crushing strength (CCS) at 1250°C induration temperature. However, hematite pellets of similar basicity with 0.5% bentonite requires higher induration temperature (1300°C) to achieve a similar CCS. The developed pellet also shows better reducibility (80%), similar reduction degradation index (18%) and swelling index (10%) to the usual bentonite pellet. Thus, the induration temperature of hematite pellet has been lowered by 50°C using a combination of NLS and Cu-SS eliminating bentonite completely, which can provide a considerable energy and cost saving.  相似文献   

2.
《钢铁冶炼》2013,40(6):443-451
Abstract

Iron nuggets can be obtained from ore–coal composite pellets by high temperature reduction. Alumina in the ore plays a vital role in slag–metal separation during nugget formation, as it increases the liquidus temperature of the slag. In this study, the effect of carbon content, reduction temperature and lime addition on slag–metal separation and nugget formation of varying alumina iron ore fines were studied by means of thermodynamic modelling. The results were validated by conducting experiments using iron ore fines with alumina levels ranging from 1·85 to 6·15%. Results showed that increase in reduction temperature enhances slag metal separation, whereas increasing alumina and carbon content beyond the optimum level adversely affects separation. Carbon below the required amount decreases the metal recovery, and carbon above the required amount reduces the silica and alters the slag chemistry. Optimum conditions were established to produce iron nuggets with complete slag–metal separation using iron ore–coal composite pellets made from high alumina iron ore fines. These were reduction temperature of 1400°C, reduction time minimum of 15 min, carbon input of 80% of theoretical requirement and CaO input of 2·3, 3·0 and 4·2 wt-% for 1·85, 4·0 and 6·15 wt-% alumina ores respectively.  相似文献   

3.
Cold bonded by‐product briquettes have been recycled in the blast furnace at SSAB Tunnplåt in Luleå since 1993. Recently, much effort has been made to increase the recycling of by‐products. One such project deals with the development of a cold bonded by‐product pellet (CBP) agglomerated from very fine dusts. The pellets used in these tests are produced from a blend containing BF flue dust, filter dust, briquette fines and BOF coarse dust as well as cement binder. The pellets were tested in the laboratory by reduction tests, softening and melting tests, thermo gravimetric analysis, differential thermo analysis, and mass spectrometry measurements. The test results indicate that the CBPs can disintegrate during reduction in the BF shaft, are self‐reducing to a high extent and, as a supplement to the normal ferrous burden, they show quite good softening and melting properties. A pilot scale test in LKAB's experimental blast furnace was performed. CBPs were charged with rates of 150 kg/tHM, 299 kg/tHM and 344 kg/tHM respectively during test periods 1, 2 and 3. The blast furnace operation was very stable during test period 1 with 150 kg CBP/tHM, but the burden descent and gas distribution were disturbed during the periods with greater CBP burden content. The rate of reducing agents was significantly decreased and slag amount was increased when CBPs were charged.  相似文献   

4.
Iron oxide dust generated during oxygen blowing in the BOF process contains a high content of iron. This iron oxide dust can be used as a material of iron source in the BOF slag reduction process or as de‐siliconisation flux or dephosphorization flux of hot metal pretreatment. One of the most practical uses of iron oxide dust is recycling as a form of pellets in the BOF considering easy application and the amount that can be recycled. In the process of making iron dust pellets cement is used as a binder that contains a lot of calcium sulfate. This calcium sulfate is reduced and dissolved in the molten metal during refining in the BOF. If the oxygen content in slag and molten steel is high enough, the reduced sulfate cannot be dissolved into molten metal and it can be removed as SOx gas. The behaviour of calcium sulfate has been studied using of 50kg high frequency induction furnace and industrial‐scale plant tests were carried out at a 300ton BOF. The results show that for low carbon steels the evaporation of decomposed sulfate increases with increasing oxygen content in the slag while for high carbon steels the decomposed sulfate is reduced into the molten metal.  相似文献   

5.
Slag formation in the bosh and raceway is an important issue in the blast furnace process. SSAB works in Luleå operate with 100 % olivine pellets. A small amount of basic fluxes is added from the top, slag and limestone are used. To improve the control of slag formation, a concept with injection of BOF slag was evaluated and tested in the LKAB experimental blast furnace (EBF). In this paper, the behaviour of BOF slag as a slag former, when it is top‐charged or tuyere‐injected, is evaluated based on the results from a laboratory study including reduction tests, softening and melting tests, XRD analyses and SEM analyses. Samples taken from the EBF during excavation, and with a burden probe during operation, are examined. The evaluations show that the melting point of BOF slag is quite low and will not be increased, because of the partial reduction that occurs in the BF shaft. When carbon is present at high temperatures, reduction proceeds and a high basicity slag with a high melting point, consisting of di‐ and tricalcium silicates, is formed. When pellets with a basicity of B2 ~ 1 are used, a slag with similar properties can be formed as a result of interaction with the BOF slag. BOF slag in combination with olivine pellets with a low basicity generates a slag with intermediate basicity and the reduction of iron oxides in the slag has a small effect on the melting temperature. The BOF slag decreases the melting point of coal and coke ashes.  相似文献   

6.
This paper concerns the degree of indirect reduction in a burden rising substantially in an oxygen blast furnace. It studies the pellet, sinter and a mixture of both in different cases. The paper concerns experiments on single particle load softening to investigate the microstructural evolution of different burdens during the softening and melting process. The results of the experiments show that the degree of reduction impacted the softening and melting behaviour. In the case of a low degree of reduction, a slag phase substrate and a myrmekitic iron structure were formed on the periphery area of the molten burden, whereas slag phase substrate and disperse island wüstite structure were formed in the centre area. Both peripheral and central areas had a slag phase substrate and myrmekitic iron texture. The slag–iron distribution had a structure in which the slag phase was cut in the metal iron phase. The content of 2FeO.SiO2 as a low melting point phase in the slag decreased sharply, and this resulted in the increase in slag–iron separation temperature. The variation of the Ca/Si ratio in the interface between the pellet and the sinter indicated that enhancement of the reduction degree caused the initial temperature of the interaction in the mixed burden to rise and the interaction distance to decrease.  相似文献   

7.
The feasibility of producing direct reduced iron from cold-bonded, self-reducing composite pellets, constituted from beneficiated iron ore slime, coke, and different binders (dextrin, bentonite, calcium lignosulfonate, and carboxymethyl-cellulose [CMC]) was studied. This was done using a design of experiments approach. It was found that as-received beneficiated iron ore slime is suitable as a raw material for the production of self-reducing composite pellets with carboxymethylcellulose as the most suitable binder. Dry strengths in excess of 300 N/pellet were attained by curing the pellets under ambient conditions. The composite pellets reduced within 20 min to degrees of metallization in excess of 90% at 1100°C, with decrepitation indices significantly below 5%. The degree of metallization of composite pellets increased with an increase in reduction temperature (from 1000 to 1100°C), reduction time (20 min. vs. 40 min), and coke quantity (15% vs. 20%). CMC was identified as the most economical and suitable binder for the Sishen concentrate.  相似文献   

8.
含碳球团的还原熔分行为   总被引:3,自引:0,他引:3  
通过高温电阻炉对含碳球团还原熔分的行为进行热态模拟研究,考察温度、配碳比、化学成分等因素对球团还原熔分的影响程度.结果表明,温度、配碳比和球团传热方向上的尺寸是控制球团还原熔分的关键;化学成分对还原速率影响不明显,但是通过改变渣的组成可对渣铁熔分起促进或抑制作用.  相似文献   

9.
先以布袋灰、电炉灰、焦粉、水泥制成冷固结球团,进行高温自还原试验。再以纯水泥试样进行差热试验。最后以纯试剂四氧化三铁和石墨粉,配加纯氧化铝粉末并且不添加粘结剂制成的冷固结球团进行自还原试验。通过检测其抗压强度、扫描电子显微镜-能谱分析等方法分析了粉尘冷固结球团高温复合粘接机理,研究表明:低温下粉尘冷固结球团的强度主要靠水泥粘结相保证,随着温度升高,水泥逐渐失效,在1 000℃后金属铁连晶开始生成,并成为主要粘结相,未熔固态成渣物质对金属铁连晶的形成具有负面的影响,当其含量超过15%时就会对金属体连晶的形成产生显著的影响。  相似文献   

10.
利用高铁赤泥的吸水性和胶结作用进行了降低球团膨润土用量的试验研究。实验室试验和工业试验结果表明:配加高铁赤泥能有效减少膨润土用量,其配比可由1.5%降到0.8%;当膨润土配比为0.8%时,生球强度、成品球强度、化学成分等都能满足球团生产要求;在冶金性能方面,添加赤泥球团的低温粉化指标优于普通球团,而还原性、还原膨胀、软熔性能低于普通球团。  相似文献   

11.
基于转底炉工艺,结合FeO-SiO_2-CaO三元相图,对金属化球团的渣系进行理论分析,同时开展模拟实验,研究了含铁尘泥金属化球团合理渣系结构。结果表明,对于含铁尘泥球团,当二元碱度为0.37~0.67时,渣系熔点小于1 150℃,球团在较低的还原温度下即可形成液相;随着渣系碱度的逐渐降低,含铁尘泥金属化球团的抗压强度呈现先增大后降低的趋势,当球团碱度为0.61时,抗压强度达到最大;金属化球团的强度与反应温度呈正相关性,反应温度的提高可大幅提高球团的强度。当球团二元碱度为0.85时,反应温度由1190℃提高至1220℃,球团的抗压强度可提高近100%。但随着球团碱度逐渐降低,不同温度条件下球团抗压强度的差异逐渐减小。  相似文献   

12.
宝钢转炉尘泥冷固球团生产及返回转炉应用   总被引:2,自引:0,他引:2  
冷固结工艺是一种简单可靠、适应性广的球团生产工艺.宝钢转炉尘泥具有粒度细、含铁量高的特点,是宝贵的二次资源.对宝钢转炉尘泥进行了原料分析,通过配料和工艺设计及检测分析,成功开发出符合使用要求的宝钢转炉尘泥冷固球团.经宝钢炼钢厂现场使用证明宝钢转炉尘泥冷固球团可以替代原有除尘灰热压球团和部分铁矿石等,具有较好的冷却和化渣效果.分析表明采用冷固结工艺替代原有热压工艺生产冷固球团返回转炉应用是宝钢转炉尘泥资源有效的利用途径.  相似文献   

13.
《钢铁冶炼》2013,40(5):426-428
Abstract

A new cold bonding technology for producing coal bearing composite pellets was developed. Alumina cement was used as binder, which gave high mechanical strength to the pellet even at elevated temperatures. Laboratory test results showed that the metallisation rate of the pellets was high owing to the intimate contact of the particulates of coal and the iron ore in the pellet. The developed cold bonding method can also be used to recycle electric arc furnace (EAF) dust, from which valuable zinc and lead can also be recovered.  相似文献   

14.
An experimental study was conducted to determine the reduction behaviour of olivine iron ore pellets and associated reduction mechanisms in the experimental blast furnace (EBF) located at Luleå. Two sets of EBF samples, namely slowly annealed excavated samples and rapidly quenched probe samples of olivine bearing iron ore pellets were examined in detail. Pellet samples were analysed using SEM, XRD and SIROQUANT analysis to quantitatively determine iron ore phase transformations during descent in the EBF. In the tested EBF campaign, up to 75% of reduction occurred at less than 1100°C, i.e. before the pellet reached the cohesive zone while rest of 25% reduction was completed when pellets reached a temperature of 1300°C and hence within the cohesive zone. The reduction degree of pellets was found to have a linear correlation with distance from the stock line of the EBF. This study showed that the presence of olivine did not have a significant effect on reduction degree for temperatures less than 1100°C in the upper zone of the EBF. However, olivine increased the reduction rate in the final stage of reduction for temperatures in excess of 1100°C in the cohesive zone, which was attributed to the formation of an increased amount of molten FeO containing slag within the pellet. This study is expected to make important contributions towards further improvements in the pellet design as well as the optimization of blast furnace operation and efficiency.  相似文献   

15.
 通过试验对镍渣和煤粉制备含碳球团的直接还原和磁选进行了研究,考察了不同温度、碳氧比、碱度等参数随时间的金属化率变化情况,以及不同磨矿细度下的磁选结果。结果表明:碳氧比为1.2,碱度为0.5的镍渣含碳球团,在1300℃下直接还原20min后可以获得98.34%的金属化率,在该条件下还原后所得金属化球团磨矿时间从10min增加到90min,粒度小于0.074mm所占比例从46.9%增加到95.6%,磁选后精矿TFe质量分数从78.82%降低到74.01%,而磁选产率与铁回收率则分别从51.77%和79.02%增加到70.92%和89.80%。实验室结果表明,镍渣通过含碳球团直接还原磁选的方式利用其中的铁资源在工艺上是可行的。  相似文献   

16.
The reduction behavior of composite pellets comprising of hematite, synthetic graphite, and several oxide binder systems was investigated in a laboratory-scale horizontal tube furnace. Three oxide binder systems using silica-rich, alumina-rich, and conventional blast furnace slag compositions were selected to examine the effect of oxide chemistry on the reduction behavior of pellets. Compositional differences in the CaO-SiO2-Al2O3 ternary system were confirmed to influence the reactions occurring in composite pellets during the reduction of iron oxide. An in situ visualization approach was used to observe the oxide/iron/carbon interactions at high temperatures from 1623 K to 1773 K (1350 °C to 1500 °C). The off-gas composition was measured by means of an infrared analyzer to determine the pellet reaction rates. Changes in physical appearance during the in situ reaction experiments demonstrated a strong correlation between the oxide composition and internal reactions. Moreover, the mechanical properties of pellets were investigated by measuring compressive strength to understand the relationship between physical properties of pellets and the associated oxide binder systems selected for this study.  相似文献   

17.
At JSW Steel Limited (JSWSL), pellets form the major part of the iron-bearing feed to corex and blast furnace. JSWSL produces low-basicity pellets ((CaO/SiO2) – 0.40 to 0.50). The quality of the pellet is affected by the raw material chemistry (gangue content), flux proportion and their subsequent heat treatment to produce the fired pellets. The raw material silica, limestone addition, i.e. basicity – CaO/SiO2 of pellet decides the mode, temperature and the amount of melt formed. The properties of the pellets are, therefore, largely governed by the form and degree of bonding achieved between ore particles and also by the stability of these bonding phases during the reduction of iron oxides. In the present study, laboratory pelletisation experiments have been carried out to know the effects of silica and basicity on the microstructure and swelling behaviour of pellets during reduction. Phase analysis was carried out using image analyser, and chemical analysis of oxide and slag phases was carried out using SEM–EDS. From the laboratory studies, it was observed that the swelling index of the pellets decreased with an increase in silica content due to the decrease in porosity. The presence of higher silica in pellet hinders the reduction step of haematite to magnetite at lower temperatures. Pellets with basicity range 0 to 0.1 exhibited lower swelling index due to the formation of high melting point fayalite phase and also at this basicity range the structure is held together by the seam-like compounds between Fe2O3 and SiO2 primarily at high silica content. Higher swelling index was observed at the basicity range 0.3 to 0.7 due to the presence of low melting point calcium olivines (1115°C) between fayalite (FeSiO4) and dicalcium silicate (Ca2SiO4). Low melting point slag phase enhances the swelling index of the pellets. Swelling index of the pellets considerably dropped between the basicity range 0.9 to 1.1 due to the formation of calcium ferrite phases with a close pore structure.  相似文献   

18.
An experimental study was conducted to quantify the rate of direct reduced iron (DRI) decarburization in a steelmaking slag using the constant volume pressure increase technique. Experiments were conducted by dropping DRI pellets into molten slag at temperatures from 1773 K to 1873 K (1500 °C to 1600 °C). Subsequent experiments were carried out in which the DRI pellets were preheated while the slag temperature remained constant. The effect of the initial carbon content and the preheating temperature of the DRI on the reaction rate was investigated. The decarburization of DRI seems to comprise two stages, a reaction between the FeO and DRI followed by decarburization through the iron oxide of slag. Carbon has a significant effect on the kinetics of both stages, whereas the preheating temperature mainly influences the rate of decarburization between FeO and carbon inside the pellet.  相似文献   

19.
钒钛磁铁矿金属化球团固结机理研究   总被引:2,自引:0,他引:2  
以转底炉工艺为基础,在实验室模拟条件下,研究了钒钛磁铁矿金属化球团的固结机理。讨论了配碳量(C/O)、还原温度、还原时间对球团金属化率和抗压强度的影响,确定了金属化球团的固结机理。研究发现:钒钛磁铁矿金属化球团的抗压强度主要与金属铁相的数量和形态以及金属化球团内孔隙的大小有关;金属化球团孔隙的大小主要取决于配碳量高低和脉石所形成的渣相对金属化球团内部孔隙的填充状态;金属铁相的数量和形态则取决于金属化球团的还原程度。随着还原温度升高和还原时间延长,金属化球团内部金属铁相密集度增加,渣相流动性改善,从而导致金属化球团孔隙减少且变小,球团强度增加。  相似文献   

20.
M.-W. Choi 《钢铁冶炼》2017,44(7):544-550
The current research attempted to investigate the crystallisation mechanism of iron oxide-devoid basic oxygen furnace (BOF) slag with adding SiO2. First, the glass sample was prepared by adding 29?wt-% of SiO2 to BOF slag, followed by eliminating iron oxide by reduction process. Non-isothermal DSC analysis together with confocal laser microscopy, XRD and EPMA mappings were carried out to observe the crystallisation process. The glass sample showed that the crystallisation process started from the surface where the main phases were identified to be akermanite, merwinite and wollastonite. In addition, the crystallisation process was affected by the nucleation temperature which was decided by the heating rate because of the difference in the nucleation rate between wollastonite and Mg-rich phases. The current results could be used to propose the feasibility of utilising BOF slag as glass-ceramics by chemical modification with heat treatment, which controls the crystallisation behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号