首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 593 毫秒
1.
以印尼褐煤为原料、KOH活化法制备的煤基活性炭,采用硝酸铜溶液浸渍-高温热解法对其进行改性处理,低温N 2 吸附法对改性前后活性炭的孔结构进行表征,SEM和XRD对改性前后活性炭的表面形态和微晶结构进行表征,并测定KOH对活性炭的润湿性及活性炭电极的恒流充放电、循环伏安、交流阻抗等电化学性能。结果表明:硝酸铜改性可能使部分孔隙(尤其是微孔堵塞)的比表面积和孔容积降低,但中孔率有所提高;硝酸铜改性可以提高KOH溶液对活性炭的润湿性,在活性炭表面负载氧化铜,提高活性炭对电解液的吸附能力,并产生赝电容效应,提高活性炭的电化学性能。在试验条件下改性硝酸铜溶液的最佳浓度为2%,其电容器的质量比电容可达322 F/g,并使交流阻抗等电化学性能得到改善。  相似文献   

2.
以印尼褐煤为原料,KOH为活化剂,在400~580 ℃的中低温活化条件下制备出超级电容器用煤基活性炭,采用低温N2吸附、X射线衍射(XRD)及扫描电子显微镜(SEM)对其孔结构、微晶结构以及表面形貌等进行表征,并评价了其用作超级电容器电极材料的电化学性能。结果表明:在KOH活化制备煤基活性炭的活化过程中,KOH与煤中C的反应始于400~460 ℃;随着活化温度的升高,活性炭的比表面积及总孔容增大,孔径分布变宽,中孔率提高。当活化温度达到580 ℃时,所制活性炭的比表面积高达1 598 m2/g,总孔容达0.828 cm3/g,中孔率达41.4%,该活性炭用作电极材料在3 mol/L KOH电解液中具有良好的充放电性能,在50 mA/g的低电流密度下比电容高达369 F/g,在2 500 mA/g的高电流密度下比电容仍保持305 F/g,其漏电流仅为0.02 mA,且具有良好的循环性能,经1 000次循环后,比电容保持率超过92%,是一种理想的超级电容器电极材料。  相似文献   

3.
煤基活性炭电极材料的制备及电化学性能   总被引:6,自引:2,他引:4       下载免费PDF全文
以太西无烟煤为原料、KOH为活化剂制备高比表面积的活性炭.采用N2吸附法对活性炭的比表面积、孔容和孔径分布进行了表征,并评价了其用作超级电容器电极材料的电化学特性.在碱炭比为4∶1,800 ℃条件下活化1 h制备的活性炭比表面积达3 059 m2/g,总孔容为1.66 cm3/g,中孔率63%.该活性炭在3 mol/L KOH电解液中的比电容为322 F/g,大电流密度下充放电时的比电容保持率高,漏电流仅有0.06 mA,是理想的超级电容器电极材料.  相似文献   

4.
为了提高煤基电极材料的吸附性能,采用不同浓度的硝酸对其进行改性处理,研究了煤基电极材料孔结构、电化学性能及电吸附处理氰化废水的变化规律。采用低温(77 K)N2吸附法、循环伏安测试等手段对煤基电极材料的孔径分布及电化学性能进行了分析表征。结果表明,随着硝酸浓度的增大,煤基电极材料的比表面积、总孔容和微孔率均呈现先增大后减小的趋势,而其质量比电容逐渐增大,交流阻抗逐渐减小。质量分数为40%的硝酸活化后的煤基电极材料具有发达的孔隙结构,比表面积达325 m~2/g,平均孔径为1.899 nm~,总孔容达0.162 cm~3/g,作为电极材料时其质量比电容为120.576 F/g。以硝酸活化后的煤基电极材料为阴阳极,采用电吸附技术处理氰化废水,溶液中各离子的去除率随硝酸浓度的增大而增加,硝酸质量分数为40%时废水处理效果最好。  相似文献   

5.
分别以神木烟煤、麦秸秆及二者混合物为前驱体,采用KOH活化法制备超级电容器用活性炭电极材料(AC1,AC2,AC3),采用低温N 2 吸附、接触角法对各活性炭的孔结构和润湿性进行表征,并利用恒流充放电、循环伏安、漏电流和交流阻抗等测试手段对各活性炭电极材料的电化学性能进行对比评价。结果表明:AC3兼具AC1比表面积高和AC2润湿性好的优点,其组装的超级电容器在3 mol/L KOH电解液中具有较高的比电容(270 F/g)、充放电可逆性好、较低的漏电流(0.01 mA)和较小的阻抗等特点,反映出煤与麦秸秆共活化过程中存在协同效应。  相似文献   

6.
以神华褐煤为原料,ZnCl_2为活化剂,采用化学活化法制备煤基活性炭,并通过NaOH溶液改性调控活性炭表面的化学官能团,进行烟气中SO_2吸附的研究。利用扫描电镜观察活性炭的表观形貌,利用低温N_2吸附法表征活性炭的比表面积及孔隙结构,利用红外光谱和Boehm滴定法考察活性炭的表面化学官能团。基于响应曲面法(RSM),对煤基活性炭的制备工艺参数进行了详细探究,建立了炭化温度、炭化时间、升温速率对活性炭比表面积的预测模型。通过响应曲面法得到/min,炭化时间3 h。得g。考察NaOH溶液浓度对煤基活性炭的孔隙结构、表面化学官能团及SO_2吸附量的影响机制。结果表明,NaOH改性后活性炭的表面更加凹凸不平,孔结构被剧烈破坏,活性炭的孔径主要分布在0. 5~0. 6,0. 7~0. 9和1. 0~4. 0 nm范围。在20%NaOH浓度改性时,活性炭具有最高的比表面积(681 m~2积(292 m~2比表面积和孔容下降。随着NaOH浓度的增加,活性炭表面的羧基、羟基等酸性基团的含量下降,而羰基等碱性基团的含量则明显增加。30%NaOH浓度处理样品的碱性基团含量最高,可达到g。进一步对活性炭的微孔比表面积、碱性官能团含量与SO_2吸附量的相关性进行分析,发现SO_2吸附量与微孔比表面积和碱性官能团含量都呈现正线性相关关系,且碱性官能团含量的相关性高于微孔比表面积。因此,表面碱性官能团和微孔结构有利于SO_2在活性炭表面的吸附。  相似文献   

7.
大同烟煤镜质组、惰质组制备活性炭的试验研究   总被引:2,自引:0,他引:2  
张文辉  李书荣  陈鹏 《煤炭学报》2000,25(3):299-302
用密度法分离富集了大同烟煤镜质组和惰质组,研究了大同烟煤镜质组和惰质组制备活性炭性能,以富集的镜质组和惰质组为原料,经成型、炭化和活化等过程,制成活性炭,分析测试结果表明:由于成因及显微组分的化学性质不同,在同烟煤镜质组制备的活性炭亚甲兰指标高于惰质组,表明由大同烟煤镜质组制备的活性炭中孔发达。  相似文献   

8.
《煤矿安全》2013,(12):23-27
纳米级孔隙是煤储层吸附甲烷的主要场所,通过对沁水盆地南部4个矿区12个代表性煤样的液氮吸附实验,详细分析了煤的纳米级孔体积、比表面积、孔径分布及孔形结构等孔隙特征(1.5100 nm);并探讨了孔体积和比表面积与煤变质程度、显微组分和矿物质含量的关系。研究结果表明:煤中BJH孔体积为0.000 5100 nm);并探讨了孔体积和比表面积与煤变质程度、显微组分和矿物质含量的关系。研究结果表明:煤中BJH孔体积为0.000 50.003 45 cm3/g,BET比表面积为0.1960.003 45 cm3/g,BET比表面积为0.1962.654m2/g。煤样纳米级孔体积由过渡孔(102.654m2/g。煤样纳米级孔体积由过渡孔(10100 nm)主导,而比表面积由亚微孔(1.5100 nm)主导,而比表面积由亚微孔(1.55 nm)控制。实验煤样的吸附回线可以分为4类,根据吸附回线可将实验煤样的孔形结构分为半封闭孔、开放孔、细瓶颈孔。随变质程度增高,孔体积和比表面积均表现出先降低再增加的趋势;比表面积与镜质组含量存在微弱的正相关关系,而与矿物质含量的关系则相反。  相似文献   

9.
为了达到更好的评价煤储层开发潜力的目的,对直接关系到煤储层流体可动性的煤层吸附时间进行了研究,通过对沁水盆地寿阳和柿庄区块3、15号煤层的煤岩进行测试,分析了高煤阶煤吸附时间的特征,讨论了镜质体最大反射率(Rmax)、煤质和气体组分等因素对吸附时间的影响。研究表明:煤阶,即Rmax是影响煤层吸附时间的主要因素,镜质组/惰质组比值、气体组分φ(CO_2)/φ(CH_4)和φ(CH_4)/φ(N_2)为次要因素,单一的显微组分(镜质组、惰质组)和灰分对吸附时间的影响不大。对高煤阶煤岩而言,当Rmax2.9%时,吸附时间随Rmax的增大而增大;当Rmax2.9%时,吸附时间随Rmax的增大而减小,主要是由于随煤岩演化程度增高,煤岩平衡水含量与比表面积综合作用引起煤岩孔隙度、微孔隙结构及比表面积下降,导致煤岩吸附能力下降。此外,受各显微组分吸附能力差异、各类气体吸附特点差异及煤层中气体浓度差等因素的影响,镜质组/惰质组、φ(CO_2)/φ(CH_4)和φ(CH_4)/φ(N_2)均与吸附时间表现为负向包络关系。  相似文献   

10.
《煤炭技术》2017,(7):274-276
以府谷烟煤为原料、KOH为活化剂,在10~180 k Pa压力内微波辐射加热制取活性炭,探究了压力对微波法制得活性炭吸附性能的影响。对制得活性炭碘吸附值、表面官能团、比表面积和孔隙结构进行表征和分析。  相似文献   

11.
以国内外8种低阶煤为原料,在相同工艺条件下采用KOH活化法制备低阶煤基活性炭,利用低温N-2吸附、傅里叶红外光谱(FTIR)及X射线光电子能谱(XPS)等对活性炭的孔结构及表面化学性质进行表征,考察原料煤的物理化学特性对低阶煤基活性炭孔结构的影响及其表面化学性质。结果表明:在碱炭质量比为3∶1、活化温度为650 ℃、活化时间为0.5 h、升温速率为10 ℃/min、保护气流量为200 mL/min的条件下,可制备出比表面积为1 694~2 956 m 2/g、总孔容为0.909~1.949 cm 3/g、中孔率为37.3%~71.1%的高品质低阶煤基活性炭;低阶煤自身固有的物理化学特性对活性炭的孔结构具有重要影响,原料煤原生孔隙丰富、挥发分高有利于活性炭中孔的发育;煤中无机矿物成分不仅会削弱活化反应的剧烈程度,而且会降低活性炭的质量及性能;低阶煤基活性炭表面含有丰富的含氧官能团,其中以羰基及酚羟基(或醚类)为主,其次为内酯基和羧基。  相似文献   

12.
以太西无烟煤和大同烟煤为原料,在不同活化温度下制备了烧失率10%~75%的活性炭。研究了活化过程中无规则碳和微晶单元结构的烧失特性,并分析了表面碳烧失特征;结合不同活化阶段的孔结构特性,分析了微孔、中孔形成及发展机制。结果表明,当烧失率低于30%时,以无规则碳烧失为主,无烟煤活性炭主要形成1.35 nm以下的微孔,而烟煤活性炭同时形成微孔和中孔结构,且中孔孔径可达到50 nm。随烧失率的增加,微晶结构参与反应,当烧失率超过50%时,层片尺寸和堆积厚度均明显减小。此时无烟煤活性炭在微晶结构间发生扩孔作用,持续发展2~4 nm的中孔,同时微晶层间距增加也可发展极微孔。烟煤活性炭微晶单元尺寸显著减小,会造成孔结构坍塌或萎缩,导致原有孔容积降低。  相似文献   

13.
解强  姚鑫  杨川  蒋煜  张军 《煤炭学报》2015,40(1):196-202
以胜利褐煤、3种低阶烟煤(灵武煤、神木煤、大同煤)和太西无烟煤为原料,采用压块工艺制备煤质颗粒活性炭,借助煤中无机矿物质组分与含量、炭化料微晶结构参数等指标考察煤种对活性炭孔结构发育的影响。结果表明:① 随着煤化程度(Cdaf)的提高,炭化料的微晶层厚度(Lc)和石墨化度(G)升高,活性炭的比表面积(SBET)增大,平均孔径(da)减小;② 煤中的矿物质含量和组成对活性炭的孔结构发育亦有重要影响,灰分过高意味着可以造孔的有机炭含量降低,但无机质中Ca,Fe等物质会催化活化反应,促进活性炭孔的发育。压块工艺条件下,煤种(煤化程度)仍然主要通过影响炭化料内微晶尺度和矿物质组成来影响最终所得活性炭的孔结构。  相似文献   

14.
An activated carbon with ash content less than ]0% and specific surface area more than 1600 m^2/g was prepared from cool and the effect of K-containing compounds in preparation of cool-based activated carbon was investigated in detail in this paper. KOH was used in co-carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X-ray diffraction (XRD) technique, activation rates of chars with different contents of K-containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over cool carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K-containing compounds such as K2CO3 and K20 remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K-containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal-based activated carbon.  相似文献   

15.
为了简化活性焦的制备工艺流程,降低其生产成本,同时拓宽准东褐煤利用途径,需要对准东褐煤热解过程进行更深入的研究。利用热重(TGA)技术考察了准东褐煤在不同升温速率(10,20,30,40和50 ℃/min)热解失重特性并采用等转化率法分析了其动力学参数,同时利用程序升温和快速热解在终温为800 ℃条件下制备出活性焦SC1和SC2。采用氮吸附仪(BET)获得煤焦的孔隙结构参数,利用红外吸收光谱仪(FT-IR)和拉曼仪光谱仪(Raman)分别获取煤焦大分子结构中的官能团和碳骨架结构信息。研究结果表明,基于热重法分析出准东褐煤热解动力学参数,活化能和指前因子变化范围为38.89~229.13 kJ/mol和108.26~1.18×109 s-1。升温速率为30 ℃/min时,有足够热量促进煤焦内部有机结构分解生成大量挥发分,煤焦内部形成合理的温度梯度,阻碍了热缩聚反应造成孔隙阻塞,挥发分顺利释放促进了孔隙结构形成。程序升温热解焦SC1烧失率为46.5%,比表面积为312.91 m2/g,孔容为0.178 cm3/g,平均孔径为2.271 nm;而快速热解焦SC2烧失率为37.3%,比表面积达到424.25 m2/g,孔容为0.189 cm3/g,平均孔径2.342 nm,以微孔为主,结构参数明显好于SC1。快速热解炭化制备活性焦前驱体,促进煤焦生成大量无定形结构和缺陷结构,利于活化阶段微孔孔隙结构的构筑。  相似文献   

16.
本文以宁夏太西无烟煤为基础材料,预先进行粉碎、脱灰处理,以KOH为活化剂,通过调节KOH和煤的比例得到不同比表面积和孔径分布的煤基多孔炭材料。在800 ℃条件下,KOH和煤的质量比为5∶1时,活化处理2 h,所得材料具有最高的比表面积和孔容(3.275 m2/g,1.62 cm3/g),其在0 ℃、100 kPa的条件下对CO2吸附的质量分数为23.71 %。以尿素为氮源对材料进行掺氮处理,通过氧化还原反应在炭材料上负载MnO2组成复合材料,将其用于锂离子电池负极。测试结果表明:所得材料的充放电循环稳定性较好,掺氮以及负载MnO2有助于材料比电容的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号