首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second. The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts. In this study, first, the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations, numerical simulations, and mine-site investigations. It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure. The faster the impact rate, the speedier the increase in gas pressure. Moreover, the gas pressure rise was faster closer to the impact interface. Subsequently, based on engineering background, we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face: static load, stress disturbance, and dynamic load conditions. Finally, the gas pressure distribution and outburst mechanism were investigated. The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load. The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face. The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation. Moreover, the stronger the dynamic load, the greater the outburst initiation risk. The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts.  相似文献   

2.
Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content, combined with high stress regime, low coal strength and high Young’s modulus. This combination of gas and stress factors occurs more often in deep mining. Hence, as the depth of mining increases, the potential for outburst increases. This study proposes a conceptual model to evaluate outburst potential in terms of an outburst indicator. The model was used to evaluate the potential for gas outburst in two mines, by comparing numerical simulations of gas flow behavior under typical stress regimes in an Australian gassy mine extracting a medium-volatile bituminous coal, and a Chinese gassy coal mine in Qinshui Basin (Shanxi province) extracting anthracite coal. We coupled the stress simulation program (FLAC3D) with the gas simulation program (SIMED II) to compute the stress and gas pressure and gas content distribution following development of a roadway into the targeted coal seams. The data from gas content and stress distribution were then used to quantify the intensity of energy release in the event of an outburst.  相似文献   

3.
构造煤及其对煤与瓦斯突出的控制作用   总被引:32,自引:4,他引:28  
高空隙率、低透气性使构造煤能够保持较高的瓦斯压力 ;破碎性、“隔离”作用及“气垫”作用 ,使构造煤抵御外力作用的能力大大降低 ;构造煤变形幅度大的特性 ,为瓦斯的迅速解吸、放散和快速流动创造了条件 ;构造煤薄弱分层或“通道层”的存在 ,则为煤与瓦斯突出的初始激发和持续发展奠定了基础 ;上述因素的共同作用 ,影响和制约了煤与瓦斯突出的强度和分布 .尽管如此 ,一定厚度的构造煤的存在只是发生煤与瓦斯突出的必要条件和有利条件 ,而非充分条件 .  相似文献   

4.
淮南矿区井田小构造对煤与瓦斯突出的控制作用   总被引:5,自引:1,他引:5  
井田小构造要素是控制煤与瓦斯突出的主要地质因素,它综合影响其他因素,会造成不同破坏程度的煤体结构.对淮南矿区煤与瓦斯突出点构造资料的统计表明,突出点受构造控制的占近64%,而煤、岩巷中的构造控制突出占近72%,突出点由小断层引起煤层产状及煤体结构强烈揉皱的占100%.淮南矿区煤与瓦斯突出点的构造组合形式分断层构造、断层与褶皱叠加和褶皱构造三类,其中断层组合又分地堑型、阶梯型、断层交汇型、挤压构造型和顺层断层型五种.小构造发育是造成煤与瓦斯突出平面分区性和空间分带性的主要原因,构造煤发育程度是造成煤与瓦斯突出发生的直接原因;必须进一步加强小构造对构造煤发育控制范围的研究,提高煤与瓦斯突出预测预报地质构造指标的可靠性.  相似文献   

5.
根据掘进工作面前方支承压力分布特征,建立了掘进工作面前方煤体的压力容器模型.通过分析认为,该模型满足压力容器爆炸的2个条件:气体迅速膨胀和容器壁脆性断裂.进而,基于压力容器发生物理爆炸前的孕育、爆炸后的能量及破坏能力,解释了煤与瓦斯突出的预兆、基本特点和一般规律,并分析了石门自行突出等问题的原因.最后,基于压力容器物理爆炸条件,给出了煤与瓦斯突出的预测指标和防突施工的努力方向,并对已有防突措施进行分析和评价.煤与瓦斯突出的压力容器物理爆炸假说的提出,对揭示煤与瓦斯突出机理具有重要意义.  相似文献   

6.
Based on the particularities of gas outbursts,i.e.,low gas beating capacity and low gas pressure in the"Three Soft"coal seam in western Henan,we applied the theories of plate tectonics and regional structural evolution to investigate the mechanism of this seam and its impact on the coal seam gas formation.Our investigation revealed that coal and gas outbursts are distributed in a strip in a NW direction,with a number of high-penetration mines scattered towards the south side and low-gas mines largely located on the north side.We analyzed the statistics of 38 gas explosions and the rock-coal sturdiness number coefficient f of 167sampling sites in the region and found the gas outburst mechanism that features a"low indicator outburst phenomenon".The mechanism is characterized by structural coal as its core,a low gas bearing capacity,low gas pressure and sturdiness coefficient f mostly less than 0.3.Our research results provide a theoretical foundation for effective control of gas disasters.  相似文献   

7.
In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.  相似文献   

8.
Based on the particularities of gas outbursts,i.e.,low gas bearing capacity and low gas pressure in the "Three Soft" coal seam in western Henan,we applied the theories of plate tectonics and regional structural evolution to investigate the mechanism of this seam and its impact on the coal seam gas formation.Our investigation revealed that coal and gas outbursts are distributed in a strip in a NW direction,with a number of high-penetration mines scattered towards the south side and low-gas mines largely located on the north side.We analyzed the statistics of 38 gas explosions and the rock-coal sturdiness number coefficient f of 167 sampling sites in the region and found the gas outburst mechanism that features a "low indicator outburst phenomenon".The mechanism is characterized by structural coal as its core,a low gas bearing capacity,low gas pressure and sturdiness coefficient f mostly less than 0.3.Our research results provide a theoretical foundation for effective control of gas disasters.  相似文献   

9.
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.  相似文献   

10.
精查勘探期间井田煤与瓦斯突出危险性预测   总被引:1,自引:0,他引:1  
本文通过精查勘探期间测定煤层瓦斯压力、瓦斯含量、瓦斯突出指标及瓦斯地质条件的分析,对韩庄井田3号、15号煤层突出危险性进行了预测,并为生产设计部门提供了科学依据.  相似文献   

11.
摘。要:选取了影响煤与瓦斯突出的5个因素作为属性条件,把突出强度作为目标变量,利用训练样本对朴素贝叶斯分类器模型进行了学习训练,对测试样本进行了预测,从结果来看精确度较高.因此朴素贝叶斯分类器模型预测煤与瓦斯突出强度是有效的.  相似文献   

12.
煤与瓦斯突出一直是威胁煤矿井下安全生产的重大地质灾害之一。论文从分析突出的因素出发,归结出煤与瓦斯突出的事故模型与问题特征,然后从工具选择、主系统开发、辅助系统开发等方面,具体讨论了专家系统原型的开发与实现过程。另外,文中提出的专家系统外挂模块松散结构体系的设计思想在国内外尚属首次。  相似文献   

13.
Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., initial speed of methane diffusion, a consistent coal coefficient, gas pressure, destructive style of coal and mining depth, as discriminating factors of the model. In our model, we divided the type of coal and gas outbursts into four grades regarded as four normal populations. We then obtained the corresponding discriminant functions through training a set of data from engineering examples as learning samples and evaluated their criteria by a back substitution method to verify the optimal properties of the model. Finally, we applied the model to the pre-diction of coal and gas outbursts in the Yunnan Enhong Mine. Our results coincided completely with the actual situation. These results show that a model of Bayesian discriminant analysis has excellent recognition performance, high prediction accuracy and a low error rate and is an effective method to predict coal and gas outbursts.  相似文献   

14.
地球物理方法是实现非接触式煤与瓦斯突出预测的必由之路。本文综述了国内外地球物理方法预测瓦斯突出的研究概况,指出了今后的发展方向。  相似文献   

15.
Based on the study of regional displaying rules of coal and gas outburst controlled by geological structure in Pingdingshan mining area, the geological structure features in outburst sites were investigated emphatically. The combination type, orientation and least seam thickness in outburst sites were put forward. This research provides a geological mark for forecasting gas outbursts in deep mining.  相似文献   

16.
针对两软一硬煤层特殊的瓦斯地质条件,以云盖山井田一矿二1煤层为例,探寻了两软一硬煤层煤与瓦斯突出的控制因素,分析了掘进工作面掘进期间突出预测指标的分布特征,总结归纳了"两软一硬"煤层煤与瓦斯突出发生规律.研究结果表明,由于地质构造变动,云盖山一矿二1煤层产状变化较大,煤层倾角发生急剧变化的地带,地应力集中;受层间滑动构造的影响,煤层厚度变化较大,具有突然增厚、变薄以至尖灭、挤灭现象;二1煤层构造软煤呈连续层状发育.因此,在煤层薄、厚交接处(煤层急剧变化带),小断层附近,应力集中,瓦斯积聚,煤体破坏严重,易发生突出.此项研究,可为地质条件类似矿井开展瓦斯地质研究和瓦斯灾害防治工作提供方法借鉴和理论指导.  相似文献   

17.
煤和瓦斯突出是世界各地煤矿地下开采的主要灾害,随着开采深度的增加和掘进速度的提高,更为常见。近一、二十年许多国家对煤和瓦斯突出的预测和预防做了大量工作,并且取得了一定的成效。为了在我们的煤和瓦斯突出的预测工作中取得更大进展,保证煤矿安全生产,本文论述了世界主要产煤国煤矿煤和瓦斯突出的概况、地质因素和预测方法,以及当前在应用研究和理论研究方面的情况和发展趋势。至于煤和瓦斯突出的预防工作以后将另文介绍。  相似文献   

18.
为了探索煤与瓦斯突出机理,根据岩体结构分类方法,把破坏类型为Ⅲ,Ⅳ,Ⅴ类的煤视为散体结构岩体.借鉴土力学流土失稳理论分析煤与瓦斯突出机制,把临界失稳梯度作为煤体的抗突强度指标.通过对煤体瓦斯压力梯度变化过程的分析,指出低透气性煤比高透气性煤更容易发生高强度突出的原因是由于低透气性煤的"失稳分层"的单位体积煤体具有更高的气体膨胀能.提出隔渗帷幕法和反滤层法2种控突思路.  相似文献   

19.
The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used for predicting the outbursts in China are considered to be inadequate, inappropriate or impractical in some seam conditions. In recent years, Huainan Mining Industry Group (Huainan) in China and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia have been jointly developing technology based on gas content in coal seams to predict the occurrence of outbursts in Huainan. Significant progresses in the technology development have been made, including the development of a more rapid and accurate system in determining gas content in coal seams, the invention of a sampling-while-drilling unit for fast and pointed coal sampling, and the coupling of DEM and LBM codes for advanced numerical simulation of outburst initiation and propagation. These advances are described in this paper.  相似文献   

20.
煤与瓦斯突出电磁辐射监测仪   总被引:5,自引:0,他引:5  
根据煤与瓦斯突出机理和突出预测与防治原理,论述了煤与瓦斯突出电磁辐射监测仪的硬件组成和关键电路的设计,并完成了软件设计。通过井下实验证实了该监测仪可实现与煤体无触监测,且信息接收、舆较为可靠,为煤与瓦斯突出的分析和预报提供了正确的原始数据资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号