首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Previous standby-sparing techniques assume that all tasks don't access to shared resources. In addition, primary tasks and backup tasks are allocated to the primary processor and spare processor respectively. Spare processor schedules tasks with maximum processor speed. Unlike previous techniques, we have studied the problem of minimizing energy consumption and preserving the original reliability for dynamic-priority real-time task set with shared resources in a standby-sparing system. We propose a novel energy-aware mixed partitioning scheduling algorithm (EAMPSA). Earliest deadline first/dynamic deadline modification (EDF/DDM) scheduling scheme is used to ensure that the shared resources can be accessed in a mutual exclusive manner. Uniformly speed is used to the primary processor and the spare processor. In addition, we use the mixed mapping partitioning of primary and backup tasks method to map tasks. A novel method of mapping task is proposed i.e. the tasks which need to access to shared resources are mapped into the primary processor and the tasks which have no resource requirements are mapped into the spare processor. Furthermore, DVS and DPM techniques are used for both primary and backup tasks to save energy. The experimental results show that the EAMPSA algorithm consumes average 55.43% less energy than that of the SSPT algorithm.  相似文献   

2.
In distributed real-time systems, an application is often modeled as a set of real-time transactions, where each transaction is a chain of precedence-constrained tasks. Each task is statically allocated to a processor, and tasks allocated on the same processor are handled by a single-processor scheduling algorithm. Precedence constraints among tasks of the same transaction are modeled by properly assigning scheduling parameters as offsets, jitters and intermediate deadlines.In this paper we address the problem of schedulability analysis of distributed real-time transactions under the earliest deadline first scheduling algorithm. We propose a novel methodology that reduces the pessimism introduced by previous methods by explicitly taking into account the offsets of the tasks. Moreover, we extend the analysis to account for blocking time due to shared resources. In particular, we propose two kinds of schedulability tests, CDO-TO and MDO-TO, and show, with an extensive set of simulations, that they provides improved schedulability conditions with respect to classical algorithms. Finally, we apply the methodology to an important class of systems: heterogeneous multiprocessor systems, with a general purpose processor and one or more coprocessors (DSPs).  相似文献   

3.
针对在共享集群中进行任务调度时,无法兼顾任务的响应速度与任务完成时间的问题,提出一种基于截止时间的自适应调度算法。该算法以用户提交的截止时间为依据,根据任务的执行进度自适应地分配适当的计算资源。不同于传统调度方式里由用户提交固定资源参数,该算法在资源约束的情况下会对优先级高的任务进行抢占式调度以保证服务质量(QoS),并在抢占过程结束后额外分配资源补偿被抢占的任务。在Spark平台进行的任务调度实验结果显示,与另一种资源协调者(YARN)框架下的调度算法相比,所提算法能严格地控制短任务的响应速度,并使长作业的任务完成时间缩短35%。  相似文献   

4.
Wolfgang A. Halang 《Computing》1992,47(3-4):199-213
All intrinsic properties of the earliest deadline taks scheduling discipline are compiled and discussed in order to show that this is the most advantageous scheme at hand, characterised by efficiency and allowing predictable system behaviour. It is then pointed out how the method naturally extends to the scheduling of tasks having non-pre-emptable regions due to resource access constraints. A sufficient condition is derived, which allows, at any arbitrary point in time and under observation of resource constraints, to check the feasible schedulability of the tasks competing for processor allocation. This condition applies to entirely non-pre-emptable tasks as well. Taking the corresponding overhead into consideration, the circumstances are characterised under which the task context-switches imposed by the scheduling algorithm can be avoided. Favourable consequences of deadline scheduling for virtual storage management are mentioned. Finally, application oriented schemes for coping with transient overloads and thus allowing load adaptive dynamic scheduling are introduced. Such overloads can be easily detected at an early stage utilising the here established schedulability criterion.  相似文献   

5.
一般来说,异构分布式实时系统中任务的周期并不完全相同且任务的时限不等于它们的周期,同时系统中还有一些无容错需求的任务.因此现有的任务调度算法一般不能满足这些要求.针对这类系统,在结合基版本/副版本技术和EDF算法的基础上,给出了一种新的容错调度算法.该算法由两部分组成:任务分配调度算法和单处理器调度算法.对于单处理器调度算法,本文采用了EDF算法;在此基础上,给出一种启发式静态任务分配算法.分析了系统的可调度性,给出了任务可调度条件和基版本/副版本时限的设置方法.仿真结果表明,这种算法是有效的.  相似文献   

6.
Many time-critical applications require predictable performance and tasks in these applications have deadlines to be met. In this paper, we propose an efficient algorithm for nonpreemptive scheduling of dynamically arriving real-time tasks (aperiodic tasks) in multiprocessor systems. A real-time task is characterized by its deadline, resource requirements, and worst case computation time on p processors, where p is the degree of parallelization of the task. We use this parallelism in tasks to meet their deadlines and, thus, obtain better schedulability compared to nonparallelizable task scheduling algorithms. To study the effectiveness of the proposed scheduling algorithm, we have conducted extensive simulation studies and compared its performance with the myopic scheduling algorithm. The simulation studies show that the schedulability of the proposed algorithm is always higher than that of the myopic algorithm for a wide variety of task parameters  相似文献   

7.
针对提高异构云平台中资源调度的效率,提出了一种基于任务和资源分簇的异构云计算平台任务调度方案。利用K-means算法,根据任务的CPU和I/O处理时间对任务分簇,根据资源的计算能力对资源分簇;然后,将任务簇对应到合适的资源簇,并利用最早截止时间优先(EDF)算法对任务簇中的独立任务进行调度,利用提出的改进型最小关键路径(MCP)算法对依赖性任务进行调度。实验结果表明,在资源异构的云计算环境中,该方案执行任务时间短、能耗低。  相似文献   

8.
Strict periodicity constraint is of great importance since it concerns some hard real-time systems where missing deadlines leads to catastrophic situations. However, the problem of schedulability analysis for non-preemptive strictly periodic tasks on a multiprocessor platform is even more intractable than the one with the common periodicity. In order to implement such systems, designers need effective tools based on fast and near-optimal solutions.This paper presents a schedulability analysis which results mainly in a, two versions, task assignment and start-time calculation algorithm. The first one targets the harmonic task periods case while the second one targets the non-harmonic task periods case. Each version is based on a sufficient uniprocessor schedulability test. In addition, for the non-harmonic case which is the most intractable, the uniprocessor sufficient schedulability test uses the strictly periodic task utilization factor. This factor stands for the fraction of time spent to execute a task while its strict periodicity and the ones of the already scheduled tasks are met. As a result, an efficient and easily implementable scheduling algorithm is proposed which begins by assigning tasks to processors then attributes a start-time to every task in such a way that strict periodicity and deadline constraints are met. The effectiveness of the proposed scheduling algorithm, in both versions, has been shown by a performance evaluation and comparisons with an optimal and a similar suboptimal solution.  相似文献   

9.
现主流的混合关键级调度算法在系统高关键级状态下时主要通过抛弃低关键级任务来保证高关键级任务的执行,进而保证系统的正确性。此方法常常导致低关键级任务无法执行但系统资源却过剩的问题发生,故基于该问题提出复合型SDU(schedule depend on utilization)调度算法。该方法根据任务集对系统资源需求情况的不同进行利用率区间的划分,通过对各个区间实际使用情况的分析,设计相应的子算法进行调度,并提出了SDU算法对应的可调度性判据。仿真实验结果表明,相较于混合关键级任务调度领域主流的EDF-VD(earliest deadline first-virtual deadline)算法,所提SDU算法可将系统对任务集的调度率提升30%,并在相同情况下将系统对低关键级任务的执行率提升165%,证明了该算法可以极大地提高系统资源使用率,并保证系统服务完整性。  相似文献   

10.
In a parallelizable task model, a task can be parallelized and the component tasks can be executed concurrently on multiple processors. We use this parallelism in tasks to meet their deadlines and also obtain better processor utilisation compared to non-parallelized tasks. Non-preemptive parallelizable task scheduling combines the advantages of higher schedulability and lower scheduling overhead offered by the preemptive and non-preemptive task scheduling models, respectively. We propose a new approach to maximize the benefits from task parallelization. It involves checking the schedulability of periodic tasks (if necessary, by parallelizing them) off-line and run-time scheduling of the schedulable periodic tasks together with dynamically arriving aperiodic tasks. To avoid the run-time anomaly that may occur when the actual computation time of a task is less than its worst case computation time, we propose efficient run-time mechanisms.We have carried out extensive simulation to study the effectiveness of the proposed approach by comparing the schedulability offered by it with that of dynamic scheduling using Earliest Deadline First (EDF), and by comparing its storage efficiency with that of the static table-driven approach. We found that the schedulability offered by parallelizable task scheduling is always higher than that of the EDF algorithm for a wide variety of task parameters and the storage overhead incurred by it is less than 3.6% of the static table-driven approach even under heavy task loads.  相似文献   

11.
提高软非周期任务响应性能的调度算法   总被引:9,自引:0,他引:9  
何军  孙玉方 《软件学报》1998,9(10):721-727
实时环境中常常既包含硬周期任务,又包含软非周期任务,引入一种改进软非周期实时任务响应时间的算法.已有的解决混合任务调度问题的方法都是基于速率单调(Rate Monotonic)策略的,其中从周期任务“挪用时间”的算法被证明优于其他所有算法.但是,速率单调算法限制了处理器的使用率,从而使周期任务的可“挪用”时间受到限制.最后期限驱动(Deadline Driven)策略DD可使潜在的处理器利用率达到100%.新算法正是在周期任务的调度中适当加入了DD策略,从而使非周期任务的响应时间得以缩短.仿真实验的结果表明,这种算法的性能优于已有的所有算法,而由它所带来的额外开销却不算很高.  相似文献   

12.
用于多核嵌入式环境的硬实时任务感功调度算法   总被引:1,自引:0,他引:1  
敬思远  余堃  钟毅 《计算机应用》2011,31(11):2936-2939
充分考虑当前CMOS多核嵌入式处理器片上仅提供全局动态电压缩放(DVS)支持以及亚纳米时代后CMOS处理器泄露功耗不可忽视的现状,提出一种新的多核嵌入式环境中的硬实时任务感功调度算法GRR&CS。算法通过基于贪心法的静态任务划分,基于全局资源回收利用和任务迁移的动态负载均衡,以及动态核缩放三个步骤实现整体能耗的降低,并同时保证实时任务的可调度性约束。实验表明,提出的算法相比较现有算法多节省14.8%~41.2%的能耗。  相似文献   

13.
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system??s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author??s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.  相似文献   

14.
孙铭才  张秦  王世强  周豪 《测控技术》2017,36(11):84-88
针对孔径分割多功能雷达的实时任务调度问题,提出了一种改进的任务自适应调度方法.该方法充分利用任务时间窗的作用,根据任务的期望执行时刻和时间窗,主动调整任务的实际执行时刻,实现任务间的紧密安排,减少空闲资源的浪费,使得孔径分割多功能雷达能够在有限的资源内调度执行更多的任务.最后将该方法与传统多任务并行(MTPEDF)调度方法进行对比仿真,仿真结果表明该方法提高了任务调度成功率和资源利用率,有效提升了孔径分割多功能雷达的整体调度性能,具有一定的优越性.  相似文献   

15.
实时系统要求任务在最差情况下能在其截止时间前获得结果,若超过了其截止时间,也会认为是错误的行为,所以改进任务可调度性分析、提高任务集可调度性尤其重要。统一调度能结合固定优先级调度的优点,防止不必要的抢占,降低资源额外销耗,能够提高任务集合的可调度性;但其任务的可调度性分析方法过于粗糙,影响任务最差响应时间分析的结果,降低了任务集的可调度性。针对存在的问题,基于统一调度,增加任务运行阶段数,重新建立任务模型,并提出通过分配任务抢占阈值、调整运行阶段的抢占阈值与长度,优化任务可容忍阻塞,改善任务集可调度性的算法。最后,实验表明,与统一调度算法及其他算法相比,所提出的调度算法能够有效改善任务集的可调度性。  相似文献   

16.
分布式控制系统中存在有强实时、软实时和非实时等多种实时性的任务,其中强实时任务必须在其时限前完成,否则会出现灾难性后果,因此必须为分布式控制系统提供一定的容错能力。首先给出了用于调度多种实时性任务的单处理器调度算法——双优先级队列调度算法,并分析算法的可调度性条件。针对分布式控制系统,考虑基版本与副版本的执行时间不同时,结合版本复制技术和单处理器调度算法提出了一种新的容错调度算法。分析了算法的可调度行,给出了可任务集的可调度条件判断方法和基版本任务时限的设置方法。在此基础上,采用启发式静态任务分配算法,保证各处理器的负载均衡。本算法在保证任务容错可调度的条件下,可提高系统中各处理器的利用率,仿真结果表明该算法是有效的。  相似文献   

17.
Most of studies about energy management for MC systems are based on dynamic priority scheme. The disadvantages of dynamic priority scheme are high system overhead and poor predictability. Unlike previous studies, we focus on the problem of scheduling mixed-criticality (MC) periodic tasks with minimizing energy consumption in MC systems based on fixed priority scheme. Firstly, we explain a criticality rate monotonic scheduling (CRMS) and propose the sufficient schedulability condition of CRMS. Secondly, we compute the energy minimization uniform scaled speed and present an optimal static solution algorithm based on CRMS. The extra workload of the high criticality level (HI) task executes with the maximum processor speed in the high criticality mode (HI-mode). But this algorithm does not exploit the slack time generated from the HI task in the low criticality mode (LO-mode). For energy efficiency, we propose a dynamic fixed priority energy minimization algorithm which exploits the slack time generated from the HI task in LO-mode to save energy. In addition, it combines a dynamic voltage and frequency scaling technique and a dynamic power management technique to reduce energy consumption. Finally, the experiments are applied to evaluate the performance of the proposed algorithm and the experimental results show that the proposed algorithm can save up 23.89% energy compared with other existing algorithms.  相似文献   

18.
一种新型实时调度算法研究   总被引:2,自引:0,他引:2  
在许多片上特定应用系统中,任务多且切换频繁,任务切换开销大,有时甚至严重影响系统的可调度性.研究了动态可抢占门限调度算法,它通过初始门限值、动态门限值的计算和优化线程分配,实现了在处理器高利用率下,有效降低任务切换开销的目的,并相应地减少了对内存的需求.动态可抢占门限调度算法是将静态抢占门限算法与动态调度算法有机地结合在一起。完成了由静态到动态无缝转换.  相似文献   

19.
实时异构系统的动态分批优化调度算法   总被引:8,自引:0,他引:8  
提出了一种实时异构系统的动态分批优化调度算法,该算法采用的是在每次扩充当前局部调度时,按一定规则在待调度的任务集中选取一批任务,对该批任务中的每项任务在每个处理器上的运行综合各种因素构造目标函数,将问题转化为非平衡分配问题,一次性为这些任务都分配一个处理器或为每个处理器分配一项任务,使得这种分配具有最好的“合适性”,以增大未被调度任务的可行性.这种方法有效地提高了算法调度成功率.同时,为了评估该算法的性能,对其进行了大量的模拟,分析了一些任务参数的变化对算法调度成功率的影响,并与老算法的调度成功率进行了比较.模拟结果显示,新算法优于老算法.  相似文献   

20.
针对分布式实时系统,在分析了单处理调度算法的基础上,结合版本复制技术和首次适应方法,给出了一种容错调度算法。分析了算法的可调度性,给出任务的可调度性条件。在满足任务容错可调度的情况下,以提高处理器的利用率为目标,对基版本时限进行了优化,给出了基版本优化时限的求取算法。仿真结果表明,本文算法将可以得到比FTEDFFF和FTRMFF更高的处理器利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号