首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
采用包埋法、超音速等离子喷涂结合化学气相沉积工艺在C/C复合材料表面制备了SiC/ZrB_2-SiC/SiC复合涂层。借助XRD和SEM等测试手段对所制备复合涂层的微观结构进行表征,采用恒温氧化实验及氧乙炔烧蚀实验考察涂层复合材料的高温抗氧化和抗烧蚀性能。结果表明,所制备涂层复合材料在900,1100,1500℃均具有较好的高温抗氧化性能,涂层氧乙炔烧蚀60 s后,质量烧蚀率和线烧蚀率分别为-0.05 mg/s和0.56μm/s。表明所制备的ZrB_2-SiC基复合涂层在为C/C复合材料提供良好的抗烧蚀保护的同时,可对材料提供较宽温度范围的抗氧化保护。  相似文献   

2.
通过真空热压工艺制备了ZrB2-SiC材料和Csf(碳短纤维)/ZrB2-SiC超高温陶瓷基复合材料.采用氧乙炔火焰在4186.8kW/m2的热流下分别喷吹烧蚀两种材料180s.ZrB2-SiC材料表而最高温度达到2406°C,烧蚀后质量烧蚀率为-0.14%,线烧蚀率为1×10-3mm/s,Csf/ZrB2-SiC材料表面最高温度达到1883°C,烧蚀后质量烧蚀率为-0.19%,线烧蚀率为-4×10-4mm/s.对两种材料烧蚀表面和剖面的分析发现,ZrB2-SiC材料烧蚀后由表及里依次形成了疏松ZrO2氧化层、SiC富集层和未反应层的三层结构,其中SiC富集层能够起到抗氧化的作用. Csf/ZrB2-SiC材料烧蚀后由外到内分别形成了ZrO2-SiO2氧化层、SiC耗尽层和末反应层的三层结构,其中最外层以ZrO2为骨架,SiO2弥合其中的结构有效地阻挡了烧蚀中氧的侵入.  相似文献   

3.
为了提高C/SiC复合材料的超高温抗烧蚀性能,以锆粉、硼粉和酚醛树脂为原料,通过泥浆涂刷后高温烧结的方法在C/SiC表面制备了ZrB2涂层,研究了涂层的烧结反应过程,并对其组成、结构和抗烧蚀性能进行了表征.结果表明:1200℃前Zr先与碳反应生成ZrC,然后在1400~1600℃时ZrC与B反应生成ZrB2.浆料配比为n(Zr):n(B):n(C)=1.0:1.5:1.0时,1600℃制备的涂层由ZrB2、少量的ZrC及ZrO2组成.氧乙炔焰烧蚀60s后,由于ZrB2氧化形成了ZrO2熔融层,涂层后的C/SiC复合材料的线烧蚀率几乎为零,而未涂层的C/SiC复合材料的线烧蚀率为0.064mm/s.  相似文献   

4.
采用超声波真空浸渍-碳热还原法将ZrB2引入碳纤维预置体,结合热梯度化学气相渗透、高温石墨化工艺制备了ZrB2改性C/C复合材料.氧-乙炔烧蚀测试结果表明,添加了6.87 wt%ZrB2后,C/C复合材料的线烧蚀率和质量烧蚀率分别下降了64.9%和67.5%.分析表明,C/C复合材料的烧蚀主要是由热化学和热物理反应控制,机械剥蚀在烧蚀过程中仅起到次要作用.烧蚀产物ZrO2/B2O3在烧蚀过程中的挥发会带走大量的热,从而减少了烧蚀火焰对烧蚀表面的热冲击.  相似文献   

5.
采用包埋法和低压化学气相沉积(CVD)法在碳/碳(C/C)复合材料表面依次制备了Ta2O5-TaC内涂层和SiC外涂层,用X射线衍射分析(XRD)、扫描电镜(SEM)及电子能谱(EDS)对涂层的相组成、微观形貌和元素组成进行了分析,研究了涂覆涂层后C/C复合材料在1 500℃静态空气中的防氧化性能及在氧-乙炔烧蚀中的抗烧蚀性能。结果表明:采用两步法制得的Ta2O5-TaC/SiC复合涂层结构致密,该复合涂层有效提高了C/C复合材料的抗氧化和抗烧蚀性能;Ta2O5-TaC/SiC复合涂层在1 500℃静态空气环境下可对C/C复合材料有效保护100 h以上;涂层试样在氧乙炔烧蚀环境中烧蚀60 s表明涂层可将C/C复合材料的线烧蚀率降低47.07%,质量烧蚀率降低29.20%。  相似文献   

6.
ZrB2基超高温陶瓷因其优异的高温抗氧化和烧蚀等性能,成为C/C复合材料理想的热防护涂层材料。本文从以下几个方面对C/C复合材料表面用ZrB2基超高温陶瓷涂层的研究现状进行了综述:介绍了ZrB2基超高温陶瓷涂层体系的主要制备技术,并对比了其制备的涂层抗氧化性和抗烧蚀性,总结了各制备方法的优点与不足;从单元、双元、三元材料掺杂改性的角度,详述了ZrB2基复合涂层常见的材料体系,总结了其改性思路;介绍了ZrB2基涂层在多层结构设计与开发方面的研究现状。最后简要展望了ZrB2基超高温陶瓷涂层未来的研究方向。  相似文献   

7.
为提高C/C-SiC复合材料的超高温抗烧蚀性能,通过浆料涂刷和高温烧结相结合的方法在C/C-SiC复合材料表面制备了ZrB2-SiC复相陶瓷涂层,利用EDS、SEM对涂层的成分及微观形貌进行了分析。对涂层材料的力学性能和抗烧蚀性能进行了表征,结果表明:制备的ZrB2-SiC复相陶瓷涂层保护C/C-SiC复合材料的拉伸强度、弯曲强度及剪切强度分别为147 MPa、355 MPa和21.9 MPa,与无涂层保护的针刺C/C-SiC复合材料的力学性能相比略有下降。涂层材料具有良好的抗氧化烧蚀性能,经过热流密度为3 200 kW/m2的氧乙炔火焰烧蚀600 s试验,其线烧蚀率和质量烧蚀率分别为0.001 mm/s和0.0006 g/s。  相似文献   

8.
掺杂改性C/C复合材料研究进展   总被引:1,自引:0,他引:1  
陶瓷掺杂改性碳/碳(C/C)复合材料在保持C/C复合材料原有优异高温力学性能及尺寸稳定性等特性的前提下,显著提高了C/C复合材料的高温抗氧化、抗烧蚀性能,且其具有可设计性和良好的抗热震性能等优势,是新型高超声速飞行器和新一代高性能发动机热防护部件的理想候选材料。综述了国内外在SiC陶瓷掺杂改性C/C复合材料,ZrC,ZrB2超高温陶瓷掺杂改性C/C复合材料以及TaC,HfC超高温陶瓷掺杂改性C/C复合材料等方面的最新研究进展和应用情况,并分析了陶瓷掺杂改性C/C复合材料目前研究及应用中存在的主要问题和今后潜在的研究发展方向。  相似文献   

9.
采用刷涂-烧结法,分别在C/C-SiC复合材料和C/C复合材料表面制备了ZrB2基陶瓷复合涂层。利用EDS,SEM分析陶瓷涂层的成分及微观形貌,通过对比C/C-SiC基体和C/C基体的表面涂层,对C/C-SiC基体表面涂层的高温烧结机理进行了探究。结果表明:高温下C/C-SiC基体中的硅组元会溢出,造成样品质量损失;同时,溢出的硅组元能渗入到陶瓷涂层中,形成了以硅为主要黏结相,ZrB2等陶瓷相弥散分布的陶瓷涂层;与C/C基体相比,硅组元的溢出能有效促进涂层与基体之间的界面结合。在对基体进行预处理的基础上,采用低温真空脱胶,高温常压烧结,能够制备出结构致密、无裂纹并与基体结合牢固的ZrB2基陶瓷涂层。  相似文献   

10.
为提高炭/炭(C/C)复合材料的高温抗氧化性能,同时分析涂层制备及高温氧化对涂层材料力学行为的影响,在C/C复合材料表面采用反应熔渗、料浆涂刷结合化学气相沉积工艺制备了SiC/ZrB2-SiC/SiC三层高温抗氧化涂层。利用SEM和XRD分析复合涂层的微观结构和相组成,考察涂层复合材料1500℃高温抗氧化和1500℃-室温的抗热震性能,研究高温氧化及热震对涂层C/C复合材料力学行为的影响。结果表明,复合涂层试样1500℃静态空气环境下具有优异的抗氧化及抗热震性能:1500℃氧化20 h后试样保持增重,1500℃至室温热震50次后增重为0.69%。因涂层制备过程中粉料的渗入反应,复合材料弯曲强度增长了7.08%。在经历1500℃氧化20 h和1500℃至室温50次热震后,涂层复合材料弯曲强度有所下降,且因材料界面结合力的减弱使得纤维拔出特征明显,材料塑性断裂特征增强。  相似文献   

11.
孙翔宇  李瑞珍  谢栋 《材料导报》2023,(S1):117-122
兼顾结构、轻量化与热防护功能,碳/碳(C/C)复合材料已成为航空航天领域的代表性材料,但其较差的抗氧化性难以应对新一代飞行器的长航时有氧服役环境。研究表明,超高温陶瓷(UHTCs)因其氧化层的热流及氧气阻隔作用,在有氧环境下具备优异的耐烧蚀性能。超高温陶瓷改性C/C复合材料(C/C-UHTCs)也有望成为满足抗氧化、微烧蚀等要求的新型热防护材料。目前,C/C-UHTCs的制备过程仍存在成本、效率、均匀性和工艺调控等诸多问题。引入UHTCs后,C/C-UHTCs的氧化烧蚀性能得到显著提升,但需要为每种材料找到各自的适用工作环境。本文重点对适用于极端气动加热环境的ZrC或HfC超高温陶瓷改性C/C复合材料(C/C-ZrC(HfC)),从制备工艺、烧蚀性能和热响应机理进行总结,为后续材料的工艺及性能优化提供借鉴。  相似文献   

12.
超高温陶瓷改性C/SiC复合材料的研究进展   总被引:1,自引:1,他引:0  
超高温复合材料的制备技术是制约新一代航天器发展的一项重要技术,为此近年来国内外积极研制耐超高温、抗烧蚀甚至零烧蚀的复合材料。概述了应用于航天领域的高温热结构复合材料C/SiC和超高温陶瓷材料的研究进展,综述了超高温陶瓷改性C/SiC复合材料的改性机理及制备方法,最后提出了今后研究的重点。  相似文献   

13.
为了研究炸药对ZrB2-SiC超高温陶瓷密度与组织的影响,采用爆炸压实工艺制备了SiC纳米颗粒和SiC晶须分别增韧的两类ZrB2基超高温陶瓷复合材料.研究发现:选择低速的硝酸铵或高速的黑索今时,两类ZrB2-SiC爆炸压实坯密度都比较低,而选择混合炸药时致密效果较好;采用225 g黑索今与75 g硝酸铵的混合炸药时,Z...  相似文献   

14.
碳/碳复合材料的宽温域自愈合抗氧化   总被引:1,自引:0,他引:1  
在前期碳材料自愈合抗氧化研究的基础上,提出了通过多元陶瓷基体改性赋予碳/碳复合材料在较宽温度范围内实现自愈合抗氧化的基本原理和技术方案,分析了B4C—SiC、ZrC—SiC和ZrB2-ZrC—SiC等多元陶瓷的抗氧化机理,并采用新近合成的ZrB2-ZrC—SiC三元复相陶瓷有机前驱体,通过PIP技术制备了一系列超高温复相陶瓷改性的碳/碳复合材料,研究了该类复合材料在2200℃以下高速气流冲蚀环境中的协同抗氧化和抗烧蚀性能,发现材料表面生成的复合氧化物层能够在一定条件下赋予复合材料自愈合抗氧化能力。  相似文献   

15.
ZrC改性C/C-SiC复合材料的力学和抗烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用碳纤维针刺预制体, 用前驱体浸渍裂解(PIP)法分别制备了C/C-SiC和C/C-SiC-ZrC陶瓷基复合材料, 并对材料的微观结构、力学和烧蚀性能进行了分析对比。结果表明:利用该方法可制备出陶瓷相填充充分且分布均匀的复合材料。C/C-SiC-ZrC的面内弯曲强度、厚度方向的压缩强度、层间剪切强度均低于对应的C/C-SiC的。2 200 ℃、600 s氧化烧蚀后, C/C-SiC-ZrC的抗烧蚀性能显著优于C/C-SiC, 其线烧蚀率下降43.8%, 质量烧蚀率下降25%。在超高温阶段, C/C-SiC-ZrC复合材料基体的ZrC氧化生成的ZrO2溶于SiC氧化生成的SiO2中, 形成黏稠的二元玻璃态混合物, 有效阻止了氧化性气氛进入基体内部。   相似文献   

16.
采用前驱体浸渍热解(PIP)工艺制备了ZrC-SiC、ZrB2-ZrC-SiC和HfB2-HfC-SiC复相陶瓷基复合材料,复合材料中的超高温陶瓷相均呈现出亚微米/纳米均匀弥散分布的特征,对比研究了上述材料在大气等离子和高温电弧风洞考核环境中的超高温烧蚀行为.研究结果表明,超高温复相陶瓷基复合材料相比传统的未改性SiC...  相似文献   

17.
采用放电等离子烧结方法(SPS)制备了ZrB2-SiC超高温陶瓷,利用激光脉冲法测试了材料的热扩散系数,研究了试样厚度对ZrB2-SiC超高温陶瓷热扩散系数测试精度的影响.结果表明:如果试样太厚,辐射热损失增大,导致测量误差增大;如果试样太薄,则难以满足激光脉冲时间应远远小于试样背面温度达到最大值的时间,也会导致测量误差增大.为了使ZrB2-SiC超高温陶瓷热扩散系数的测试结果更为精确,试样的厚度应在3mm左右.  相似文献   

18.
以ZrB2为改性剂,采用热压工艺制备了碳布/酚醛复合材料,通过氧/乙炔烧蚀实验对复合材料的烧蚀性能进行了研究,利用扫描电镜和能量色散谱仪对复合材料烧蚀形貌和成分进行了分析。结果表明:经氧/乙炔焰烧蚀后,在复合材料表面形成了一层陶瓷层,其质量烧蚀率为0.04585g/s,线烧蚀率为-0.013mm/s,经二次烧蚀后,复合材料的质量烧蚀率为0.0096g/s。当ZrB2和POSS配合使用改性碳布/酚醛复合材料时,碳布/酚醛复合材料的质量烧蚀率可达0.025g/s,二次质量烧蚀率可达0.0089g/s。  相似文献   

19.
超高温复合材料的制备技术是制约新一代航天器发展的一项重要技术,为此近年来国内外积极研制耐超高温、抗烧蚀甚至零烧蚀的复合材料。概述了应用于航天领域的高温热结构复合材料C/SiC和超高温陶瓷材料的研究进展,综述了超高温陶瓷改性C/SiC复合材料的改性机理及制备方法,最后提出了今后研究的重点。  相似文献   

20.
抗烧蚀C/C复合材料研究进展   总被引:1,自引:0,他引:1  
C/C复合材料因优异的高温性能被认为是高温结构件的理想材料。然而,C/C复合材料在高温高速粒子冲刷环境下的氧化烧蚀问题严重制约其应用。因此,如何提高C/C复合材料的抗烧蚀性能显得尤为重要。笔者综述C/C复合材料抗烧蚀的研究现状。目前,提高C/C复合材料抗烧蚀性能的途径主要集中于优化炭纤维预制体结构、控制热解炭织构、基体中陶瓷掺杂改性和表面涂覆抗烧蚀涂层等4种方法。主要介绍以上4种方法的研究现状,重点介绍基体改性和抗烧蚀涂层的最新研究进展。其中,涂层和基体改性是提高C/C复合材料抗烧蚀性能的两种有效方法。未来C/C复合材料抗烧蚀研究的潜在方向主要集中于降低制造成本、控制热解炭织构、优化掺杂的陶瓷相以及将基体改性和涂层技术相结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号