首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1...  相似文献   

2.
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.  相似文献   

3.
The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ( wt% ) composite powders were prepared by the spray thermal decomposition-continuous reduction and carburization technology. In order to improve the properties of rods shaped by using powder extrusion molding, the cold isostatic pressing (CIP) technology was used before or after debinding. Specimens were siutered by vacuum siutering and hot isostatic pressing (HIP). The density, Rockwell A hardness, magnetic coercivity , and magnetic saturation induction of siutered specimen were measured. The microstructure of the green bodies and the siutered specimens was studied by scanning electron microscopy (SEM). Results show that the rod formed by using powder extrusion molding after debinding and followed by cold isostatic pressing can be siutered to 99.5% density of composite cemented carbide rods with an average grain size of about 200- 300 nm, magnetic coercivity of 30.4 KA / m, Rockwell A hardness of 92.6 and magnetic saturation induction of 85% . Superfine WC- 10 Co cemented carbide rods with excellent properties were obtained.  相似文献   

4.
为了给后续的致密化工序(如热挤压)提供较高质量的烧结坯,用扫描电镜和光学显微镜分析了3%C-Cu机械球磨复合粉末所制备烧结坯的显微组织,并研究了工艺参数对其相对致密度的影响规律。结果表明,烧结温度对未机械球磨混合粉烧结行为的影响很大,而机械球磨复合粉对烧结温度不敏感。真空热压烧结可以明显地促进致密化过程。提高烧结温度、延长烧结保温时间或增加热压压强,均有助于提高烧结坯的相对致密度。在相同条件下,烧结坯的相对致密度随着复合粉末机械球磨时间的延长而降低。  相似文献   

5.
覆膜金属粉末变长线扫描激光烧结成型特性   总被引:1,自引:0,他引:1  
介绍了利用变长线扫描激光烧结技术制造金属零件的基本原理。在线扫描激光烧结成型实验装置上对覆膜98Fe2Ni合金粉末进行了烧结成型试验,研究了铺粉厚度、预热温度、激光功率、扫描速度及扫描方向等工艺参数对烧结成型性能的影响关系。  相似文献   

6.
The effects of microwave sintering on the properties, phases and microstructure of W-20Cu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-20Cu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures.  相似文献   

7.
The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated.In comparison to the conventional H2 sintering processing,microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time.Furthermore,higher performances in microwave sintered compacts were obtained,but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.  相似文献   

8.
1 IntroductionAlumina (Al2 O3 )bioceramicsarewidelyusedinclinicforhardtissuesubstitution ,especiallyforfemurballofartificialhipjoint.Al2 O3 materialhasgoodbiocompati bility ,physiologicinertia ,physicalandchemicalstability ,highhardnessandwearability .Butundernormalcondi tions,pureAl2 O3 isdifficulttobepreparedbecausethesinteringtemperatureishigh (generallyat 170 0℃to2 0 0 0℃ )andtheheat pressure ,atmosphereorvacuumareevenrequired .Inordertoreducethesinteringtemperatureandimprovetheproper…  相似文献   

9.
TiC based cermets were produced with FeCr, as a binder, by conventional P/M (powder metallurgy) to near 〉97% of the theoretical density. Sintering temperature significantly affects the mechanical properties of the composite. The sintering temperature of 〉1360℃ caused severe chemical reaction between TiC particles and the binder phase. In the TiC-FeCr cermets, the mechanical properties did not vary linearly with the carbide content. Optimum mechanical properties were found in the composite containing 57wt% TiC reinforcement, when sintered at 1360℃ for 1 h. Use of carbon as an additive enhanced the mechanical properties of the composites. Cermets containing carbon as an additive with 49wt% TiC exhibited attractive mechanical properties. The microstructure of the developed composite contained less or no debonding, representing good wettabifity of the binder with TiC particles. Homogeneous distribution of the TiC particles ensured the presence of isotropic mechanical properties and homogeneous distribution of stresses in the composite. Preliminary experiments for evaluation of the oxidation resistance of FeCr bonded TiC cermets indicate that they are more resistant than WC-Co hardmetals.  相似文献   

10.
In order to study the properties of sintered copper powder shaped charge liner, the copper powder, whose particle size was below 20 μm, was chosen as the main material. The mixed powders were directly pressed into the desired shape of the shaped charge liner by the top direct-pressure way. The microscopic morphology of the spinning shaped charge liner, the sintered and non-sintered powder liners, and the particle properties of the copper powder were studied with scanning electron microscopy. The experimental results showed that the irregular copper powder could get together effectively and sintering could improve the compactness of the powder liner effectively. The wall thickness and density of the non-sintered and sintered liner were also tested, and it shows that sintering causes the wall thickness thinned and the density improved. The penetration depths of non-sintered powder liner, sintered powder liner and the spinning copper plate liner were tested with different standoff respectively, showing that the penetration properties of sintered powder liner are well.  相似文献   

11.
Two hafnium diboride based ceramic matrix composites containing 20% (volume fraction) SiC particle and with or without AlN as sintering additives were fabricated by hot-pressed sintering. The mechanical properties and microstructures of these two composites were tested and the thermal shock resistances were evaluated by plasma arc heater. The results indicate that the composite with AlN as sintering additive has a denser and finer microstructure than composite without sintering additive, and the mechanical properties, thermal shock resistance of the composite with AlN as sintering additive are also higher than those of the composite without AlN. Microstructure analysis on the cross-section of two composites after thermal shock tests indicates that a compact oxidation scale contains HfO2 and Al2O3 liquid phase is found on the surface of composite with AlN, which could fill the voids and cracks of surface and improve the thermal shock resistance of composite.  相似文献   

12.
Composite powder prepared of calcium ox-ide stabilzed ZrO_2 (CSZ)and NiCr by vacuum sintering isstudied, and the effect of additive TiO_2,on its properties isdiscussed. The morphology and phases of the powder weremeasured and determined by SEM.EPMA. XRD methodsand the testing of flowability, bulk density and microhard-ness. The results show that the metallic camponents in thepowder are in homogeneous distribution,the flowability.bulkdensity and microhardness are superior to the ZrO_2-NiCrpowder prepared by mechanically mixing. All components inthe coating made of the composite powder are well-distribut-ed because of avoiding segregation in the middle of mixing.It proves that the comopsite powder is an excellent materialfor plasma spraying.  相似文献   

13.
用不同浓度的NaOH 溶液对竹纤维(bamboo fiber, BF) 进行表面改性处理, 一定温度烘干后, 通过熔融挤出 制备了竹纤维/聚丙烯(BF/PP) 竹塑复合材料。采用示差同步扫描热分析仪(TG-DSC)、红外光谱(FTIR)、X 射线衍 射仪(XRD) 和扫描电镜(SEM) 等对预处理前后BF 的结构进行表征, 并研究了复合材料的力学性能。结果表明: 改 性后BF 的热稳定性升高, 形成疏松的纤维束; 复合材料的力学性能显著提高。其中用3% 的NaOH 溶液改性BF 制 备的复合材料的力学性能最佳, 冲击强度较纯PP 可提高100%, 屈服强度提高14.8%。复合材料冲击断面SEM 显 示, 一定浓度的NaOH 溶液改性可以明显提高BF 与PP 基体树脂间的相容性。  相似文献   

14.
采用两步烧结法烧成的钛合金牙种植体表面与复合涂层结合强度及结合机理。通过结合界面的XRD谱、XPS谱和FT-IR谱,提出了界面理想结构模型;应用该模型解释了延长烧成时间和还原气氛烧成对结合强度不利的原因。同时对最佳的烧成温度、烧成时间以及合理的升温速度作了预测。  相似文献   

15.
Microstructure of Selective Laser Sintered Polyamide   总被引:5,自引:0,他引:5  
1 IntroductionSelectivelasersintering (SLS)isanadvancedrapidprototypingtechnologythatcanshortenthedesignandmanufacturingcycle ,hencereducetheproductioncostandincreasethecompetitivenessofnewproducts[1] .SLSisathermalprocess ,creatinglayersbyascanninginfraredla serbeammeltingpowder[2 -4] .Eachlayerisdrawnonthepartcylinderusingthelasertosinterthematerial.Thenthepartbedisloweredandpowder feedingcartridgeraised .Anewcoveringofpowderisnextspreadbyaroll er.Thesinteredmaterialformsthepartwhiletheu…  相似文献   

16.
In the current work hydroxyapatite Ca10(PO4)6 ·OH2(HA) was sintered with the addition of 3 wt% aluminum isopropoxide(C9H21AlO3) powder and 3 wt % Teflon powder(-C2 F2-). Sample was prepared by following sol-gel technique. Obtained pellets of samples were sintered. For investigation of effects of temperature on microstructures and mechanical properties the samples were sintered at various temperatures. For studying the phase composition, microstructures and elemental analysis the sintered samples were characterized by X-rays diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive X-rays diffraction(EDAX) respectively. After sintering the samples mechanical properties, i e, grains size, apparent density, Vickers hardness, bending strength and compressive strength were found to be 2.14-18.76 μm, 1.523 6-0.752 g/cm3, 3.60-0.600 GPa and bending strength 33.265 8-14.900 MPa, 75-33 MPa, respectively. As a result of sintering fluoridated composite material was obtained.  相似文献   

17.
Copper-nickel nanoparticle was directly prepared by flow-levitation method(FL) and sintered by vacuum sintering of powder(VSP) method. Several characterizations, such as transmission electron microscopy(TEM), scanning electron microscopy(SEM), X-ray diffraction(XRD), differential thermal analysis(DTA), and energy-dispersive X-ray spectroscopy(EDX) were used to investigate the prepared nanostructures. The results of the study show that FL method could prepare high purity Cu-Ni nanocrystals of uniform spheres with size distribution between 20 and 90 nm. After sintering the bulk nanocrystalline copper-nickel has obvious thermal stability and the surface Webster hardness increases with the rising sintering temperature. At the temperature of 900 ℃, the specimen shows higher surface Webster hardness, which is about two times of traditional materials. When the sintering temperature arrives at 1 000 ℃ the relative density of bulk nanocrystals can reach 97.86 percent. In this paper, the variation tendency of porosity, phase and particles size of bulk along with the changing of sintering temperature have been studied.  相似文献   

18.
The effects of activated sintering technology of H2 atmosphere sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying calcining-continuous reduction technology were investigated.The experimental results showed that W-15Cu alloy,consolidated by activated sintering technology of H2 atmosphere sintering for 1 h at 1300 ℃,with 98.5 % relative density,transverse rupture strength 1218 MPa,Vickers hardness HV0.5 378,average grain size about 1.2 μm and thermal conductivity 192 W/m·K,was obtained.In comparison to the normal sintering process,activated sintering process to W-15Cu alloy could be achieved at lower sintering temperature.Furthermore,better properties in activated sintered compacts were obtained,and activated sintering process resulted in finer microstructure and excellent properties.  相似文献   

19.
To prepare PZT powder at lower temperature, lead zirconate titanate (PZT) powder (x(Zr)/x(Ti)=56?44) was prepared by wet-dry method. Glycol was used as the solvent, and zirconium oxychloride was used as zirconium source. The properties and structure of the powder were analyzed by XRD, SEM and Sedimentograph. The effects of sintering parameter such as sintering temperature, keeping time and heating-up velocity on structure of PZT power were investigated. The results show that homogeneous PZT with single-phase perovskite structure can be obtained after sintering at 730 ℃ for 2 h, and the average size of PZT powder is about 113 nm.  相似文献   

20.
以喷雾干燥-共还原法制备的W-15Cu超细复合粉末为原料,采用氢气活化烧结制备了W-15Cu高比重合金,研究了晶粒生长抑制剂Y2O3对合金性能与结构的影响。利用扫描电镜、维氏硬度仪、密度测试仪、金相显微镜等,观察烧结体显微结构,测试其硬度、密度与断裂强度。结果表明,在最佳烧结温度下,添加质量分数0.3%Y2O3的W-15Cu合金抗弯强度达到最大值1 128.6 MPa,添加质量分数0.5%Y2O3的W-15Cu维氏硬度达到最大值2.78 GPa,优于未添加抑制剂的W-15Cu合金。Y2O3可以细化W晶粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号