首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
针对紫苏油不饱和脂肪酸含量高,在储存过程中易氧化等特点,以Tween 80和Span 80作为乳化剂,采用高压均质法制备紫苏油乳液。通过激光粒度仪和TURBISCAN稳定性分析仪来探究乳化剂用量、油水比例、高压均质的压力和循环次数及HLB值对紫苏油乳液稳定性的影响,从而提供一种紫苏油乳液制备方法,拓宽紫苏油在食品中的应用范围。结果表明,紫苏油乳液粒径主要分布在300~670 nm。当乳化剂质量分数由0.2%增加至1.2%时,乳液粒径下降,稳定性提高;此时,乳液平均粒径(d=513 nm)最小。随油水比增加,紫苏油乳液稳定性下降;高压均质过程对乳液的稳定性有显著影响,压力越大,循环次数越高,乳液越稳定。与单一乳化剂(HLB=15)相比,复配乳化剂(HLB=8~14)可制得更稳定的乳液,且当HLB值为11时,紫苏油乳液的平均粒径(d=374 nm)最小。运用优化条件制备紫苏油乳液,将其与紫苏油同时置于50℃恒温贮藏2周,比较二者过氧化值(POV)变化。结果表明,经过11 d的加速氧化,紫苏油乳液的POV值仅为31.43mmol/kg,远小于纯紫苏油的POV值(88.76 mmol/kg)。  相似文献   

2.
陈雅琪 《中国油脂》2021,46(6):48-52
采用高压均质法,以乳清分离蛋白为乳化剂制备南瓜籽油乳液,对均质压力、均质次数、乳化剂添加量以及南瓜籽油质量分数对南瓜籽油乳液粒径、多分散系数(PDI)、Zeta电位和分光比(SRI,800 nm下吸光度与400 nm下吸光度的比值)的影响进行考察,并研究了南瓜籽油乳液的稳定性。结果表明:南瓜籽油乳液的最佳制备工艺条件为均质压力50 MPa、均质次数5次、乳化剂添加量2.5%、南瓜籽油质量分数10%,在最佳工艺条件下,南瓜籽油乳液的粒径为(213.33±5.60)nm,PDI 为0.215±0.002,Zeta电位为(-5680±0.66)mV,SRI为 0.27±0.02;在15 d的室温储藏期间内南瓜籽油乳液具有较好的物理稳定性和较高的氧化稳定性。  相似文献   

3.
本文探讨了乳化剂类型、浓度和均质条件(压力和均质次数)对橙皮精油纳米乳液平均粒径(mean droplet diameter,MDD)、浊度以及贮藏稳定性的影响。采用四种乳化剂(皂树苷,QS;变性淀粉,MS;乳清分离蛋白,WPI;十二烷基硫酸钠,SDS),经高压微射流经不同均质压力和均质次数制备橙皮精油纳米乳液。结果表明,在一定范围,随着乳化剂浓度增加,MDD会逐渐减小,而SDS、QS、WPI和MS合适的浓度分别为2%、4%、4%和8%(w/w)。随着均质压力和均质次数增加,纳米乳液MDD和浊度都呈现较相似的减小趋势,在压力和次数分别增加到22000 psi和4次时,四种纳米乳液粒径可小于150 nm。研究发现,均质压力与MDD近似指数关系,乳液的相黏度比也会影响其MDD。贮藏实验表明,经25 ℃贮藏21 d,四种纳米乳液MDD基本稳定。  相似文献   

4.
应用高压匀质法制备美藤果油水包油型乳液。以乳液的平均粒径和分散系数(PDI)为指标,探究Tween乳化剂类型、油质量分数、乳化剂添加量、剪切速率及均质压力对乳液的平均粒径以及PDI的影响。通过测量储藏期内乳液的粒径变化、油相氧化程度(过氧化值和硫代巴比妥酸含量)、液滴的自扩散系数以及游离脂肪酸含量变化,进一步探究储藏期内乳液的物理、氧化以及水解稳定性。结果表明:制备乳液的优化工艺条件为Tween60添加量1%、油质量分数10%、剪切速率16 000 r/min、均质压力40 MPa,此条件下制备的乳液平均粒径为(218. 27±2. 21) nm,PDI为0. 118±0. 002;该工艺条件下制备的美藤果油乳液在14 d的储藏期间内具有较好的耐受pH、盐离子的物理稳定性和较高的氧化稳定性,并且未发生明显的水解作用。  相似文献   

5.
袁媛  毛立科  高彦祥 《食品科学》2008,29(5):181-186
采用Tween系列乳化剂(Tween20、40、60、80)粗乳化β-胡萝卜素并经100/10MPa二级高压均质制备 0.5%(W/W)β-胡萝卜素含量、不同乳化剂浓度(4%~12%)的纳米乳液,经4、25、55℃贮藏28d,根据 ΔBS(t)值、贮藏过程中β-胡萝卜素纳米乳液的粒径大小以及色素含量的变化比较四种Tween乳化剂及其浓度对β-胡萝卜素纳米乳液稳定性的影响.结果表明:采用10% Tween20制备的β-胡萝卜素纳米乳液的平均粒径(d=132nm)最小,稳定性较好,而且色素保留率最高(64%~78%).  相似文献   

6.
研究生物大分子辛烯基琥珀酸淀粉(OSA)的乳化特性,并以其为乳化剂构建负载番茄红素的稳定纳米乳液体系。研究结果表明:溶解温度70℃,淀粉浓度为30%(w/w)时,OSA变性淀粉的乳化性能最佳。以其为乳化剂,当油相(中链甘油三酯,MCT)中番茄红素的质量浓度为0.1%(w/w),油水比1∶9时,通过高压均质得到的纳米乳液粒径120 nm,番茄红素负载率63%,经过一个月的储藏后,乳液粒径增加到160 nm,增长幅度小于34%,性状稳定,没有油相析出,表明OSA变性淀粉适合作为构建安全稳定纳米乳液的乳化剂。  相似文献   

7.
本研究目的是通过高压微射流均质建立4种(蛋白质类、多糖类、小分子合成乳化剂、磷脂类)稳定的姜黄素乳液运载体系。以粒径为考察指标,采用Lumisizer稳定性分析仪研究不同均质压力、均质次数、乳化剂浓度对姜黄素乳液稳定性的影响。结果显示:4种乳化剂中吐温80对乳液的粒径影响最大,乳清蛋白次之,然后为卵磷脂和阿拉伯胶。当制备稳定的姜黄素乳液体系时,吐温80、乳清蛋白、卵磷脂和阿拉伯胶所需的均质压力分别为40,60,40 MPa和20 MPa;均质次数分别为6,4,4次和2次;质量分数分别为2%,2%,4%和4%。本文筛选的姜黄素乳液运载体系可广泛应用于各类姜黄素的功能食品及医药品中。  相似文献   

8.
以辛烯基琥珀酸淀粉酯为乳化剂,白藜芦醇为药物模板,利用剪切乳化结合高压均质技术制备白黎芦醇乳液,单因素实验考察了剪切乳化过程中乳化剂用量、乳化时间、乳化温度和白藜芦醇加入量对初乳液稳定性的影响,获得制备白藜芦醇初乳液的优化工艺为SSAS加入量4%,白藜芦醇加入量0.2%,乳化温度50℃、乳化时间20 min,此条件下SSAS制备的白藜芦醇初乳液的稳定性较好。在剪切乳化优化工艺条件下考察了高压均质压力和均质次数对白藜芦醇乳液粒径分布的影响,结果表明,高压均质对辛烯基琥珀酸淀粉酯制备白藜芦醇乳液的粒径分布有显著影响,均质压力在40~100 MPa、均质2次的条件下,乳液的粒径分布较好。  相似文献   

9.
尝试以2种不同的辛烯基琥珀酸酯化淀粉(OSA1、OSA2)作为乳化剂,研究其乳化特性,在不同条件下构建番茄红素稳定的纳米乳液体系。结果表明最佳的制备条件:乳化剂浓度30%,采用高压微射流均质机,均质压力为100 MPa,循环5次,2种乳液粒径分别为(107±1.32) nm、(101±0.81) nm,保留率分别为85.67%±0.63%和86.78%±0.36%。在常温下储藏4周,乳液粒径分别增至(158.84±3.51)nm和(129.18±4.22)nm。与未被包埋的番茄红素相比,2种纳米乳液包埋的番茄红素的降解速度明显降低,说明基于OSA变性淀粉为乳化剂构建纳米乳液能有效抑制番茄红素的降解。综合2种纳米乳液在储藏过程中粒径的变化与番茄红素保留率,其稳定性表现为OSA2 OSA1,此结果与2种淀粉的乳化活性和乳化稳定性呈正相关性。  相似文献   

10.
大豆多肽是具有营养、呈味、抗氧化等生物活性的新型多功能天然乳化剂,为开发大豆多肽在食品乳液中的应用,本研究探索了超高压均质技术制备大豆多肽纳米乳液的影响因素和加工效果。以大豆分离蛋白为原料酶法制备大豆多肽(Soybean protein isolate hydrolysates,SPIH),考察了多肽质量浓度、均质压力和循环次数对纳米乳平均粒径、粒度分布和物理稳定性的影响,在单因素实验基础上,以粒径和稳定性为指标,通过正交试验进行工艺优化,并应用粒度仪和原子力显微镜表征了其储存稳定性和和微观形貌。结果表明,各因素最佳水平为:20 mg/mL多肽质量浓度,140 MPa均质压力和5次循环,在此条件下制备得到粒径为178.8 nm,稳定性指数Ke=7.37%的纳米乳液。超高压均质法制备的大豆多肽纳米乳具有均匀的液滴分布并可稳定储存56 d以上,随多肽质量浓度增加纳米乳液滴聚集情况明显。研究为多肽乳化剂纳米乳液的制备和应用提供了参考。  相似文献   

11.
Two modified Acacia gums, the already tested SUPER GUM? EM2 and the new EM10, were used as combined emulsifiers and stabilizers in coconut oil model emulsions. The properties of gum solutions as well as those of the emulsions were examined. The gum solutions were completely mechanically stable during high-pressure homogenization; therefore, the gum could be added to the emulsion prior to high-pressure treatment. The emulsions were prepared by a small-scale rotor-stator process and by high-pressure homogenization, respectively. Droplet size, stability and rheological properties of the emulsions were examined. As expected, the high-pressure process was very effective. The emulsions made with both modified gums had a droplet size below 1 μm and were completely stable for at least 7 weeks at up to 30 °C. The new SUPER GUM? EM10 was more efficient as an emulsifier than EM2; the droplet size distribution was more homogenous. All emulsions proved to be low-viscous and nearly Newtonian liquids. It can be concluded that the emulsion stability was mainly a result of the excellent emulsifying properties and not of an additional thickening effect of the gums. The modified Acacia gums can be recommended as an emulsifier and stabilizer for application in different food products, preferably in low-viscous emulsions such as coconut milk drinks or other beverages.  相似文献   

12.
为适应食品工业对食品配料天然绿色、营养健康的追求,采用大豆分离蛋白(soy protein isolate,SPI)-甜菊糖苷(steviol glycosides,STE)复合体系作为稳定剂制备纳米乳液,研究稳定剂组成、微射流参数、油相质量分数等对纳米乳液形成的影响,并对乳液稳定性及微结构进行表征。结果表明:油相质量分数为10%时,单独SPI(1%)制备的乳液粒度较大(d43为0.548 μm),稳定性差。添加0.25%~1% STE时,乳液粒度分布更均匀,粒度变小;当STE质量分数为0.5%和1%时,乳液粒度小于200 nm,且具备较好的贮存稳定性(30 d)。添加2% STE会导致乳滴表面蛋白被完全取代,从而弱化乳液的长期稳定性。微射流压力、均质次数及STE质量分数的增加均可降低乳液粒度,但油相质量分数的增加可增加乳液粒度。进一步将纳米乳液进行冷冻干燥处理,可制得结构化良好且高油含量的油粉;相对于单独SPI稳定的结构化乳液,SPI-STE纳米乳液制得的油粉结构更为完整,表面黏性小。  相似文献   

13.
本实验以亚麻籽油体为研究对象,通过对其进行均质处理,得到了稳定的富含α-亚麻酸的亚麻籽油体乳液,为居民在日常膳食中提高-3不饱和脂肪酸摄入量提供了新的途径。在保持均质时间相同的条件下(3 min),对亚麻籽油体进行不同均质压力(40、80、120 MPa)与均质次数(1~3次)处理,考察均质处理对亚麻籽油体乳液的性质、环境稳定性(pH、离子强度、热、氧化稳定性)、储藏稳定性和消化特性的影响。结果表明,FOB在120 MPa下均质处理3次,电位绝对值增加,粒径显著减小(P<0.05)。均质处理后的亚麻籽油体乳液在50~90℃下热处理30 min,粒径、电位稳定,且表现出更好的氧化稳定性和储藏稳定性(P<0.05)。均质处理亚麻籽油体并不影响其对pH4~5和离子强度不稳定(P>0.05)。消化结果表明,均质处理后的亚麻籽油体乳液具有更快的脂肪酸释放速率(FFA)。综上,均质处理显著了减小亚麻籽油体乳液的粒径,增强了亚麻籽油体的储藏稳定性和氧化稳定性,且加快了脂肪酸释放速率。  相似文献   

14.
为制备较为稳定的椰子油乳液,将酪蛋白酸钠(Sodium caseinate,SC)和黄原胶(Xanthan gum,XG)复合作为乳化剂,椰子油为油相,采用超声方法制备椰子油乳液。以平均粒径、Zeta-电位、离心稳定性及浊度等为考察指标,通过单因素实验筛选出超声功率、超声时间、油相质量分数和水相pH的合理研究范围。以平均粒径为响应值,用Box-Behnken响应面法对超声功率、超声时间和水相pH做进一步优化实验并对制备的乳液进行稳定性实验。结果表明,最佳制备工艺参数为:超声功率为480 W,超声时间为18 min,水相pH为7,所得椰子油纳米乳液的平均粒径为304.5±13.2 nm。所制备的椰子油纳米乳液在热处理温度40~90℃,pH6~8,离子浓度0~0.5 mol/L条件下具有良好的稳定性,且经3次冻融循环后乳液保持稳定,为构建用于食品加工的高稳定性椰子油乳液提供了理论支持。  相似文献   

15.
以二十二碳六烯酸(docosahexenoic acid,DHA)微藻油微胶囊化过程中形成的乳状液为研究对象,通过测定乳状液稳定性、界面膜强度、界面张力、粒径和Zeta-电位,探究乳化剂、pH值和金属离子对乳状液稳定性的影响。结果表明,司盘80与吐温60复配的乳状液亲水亲油平衡(hydrophile-lipophile balance,HLB)值为11.19时,对乳状液稳定性的提升效果最明显。乳化剂的种类比HLB值更明显地影响乳状液稳定性,其作用机制与乳状液的界面膜强度紧密相关。吐温20与单甘酯复配乳化剂(体积比58∶42)添加量高于1.2%时,界面膜强度高,乳状液最稳定。此外,乳状液的pH值与金属离子均能明显影响乳状液稳定性。pH值越高,乳状液中静电斥力越强,从而促进稳定性提高。低浓度的金属离子能够提高乳状液稳定性;高浓度金属离子,尤其是高价金属离子,能明显降低乳状液稳定性。高浓度Fe3+能够通过氧化DHA的方式破坏乳状液,甚至使乳状液形成不溶性的悬浊状态。结论:研究可为提高DHA微藻油乳状液稳定性和开发高质量微胶囊提供参考。  相似文献   

16.
The impact of freeze–thaw cycles on the physical stability of oil-in-water emulsions containing lecithin – coated and modified starch – coated droplets has been studied by combined dynamic light scattering (DLS) and differential scanning calorimetry (DSC) measurements. Emulsions prepared by high-pressure homogenization were within 200 nm size ranges. Lecithin-based emulsion systems were unstable to freeze–thaw cycles, which was attributed to extensive droplet aggregation induced by the ice formation during emulsion freezing process. Instead, modified starch systems were highly stable due to the formation of a thick layer of emulsifier which prevented the coalescence of nanoemulsions. The addition of ice nucleating protein lowered the freeze–thaw stability of lecithin-based emulsions, but had negligible effect on modified starch-based emulsions. In contrast, the addition of poly(ethylene glycol) improved the stability of lecithin-based emulsions but destabilized the modified starch-based emulsion systems.  相似文献   

17.
以非牛顿假塑性大分子壳聚糖溶液为水相,棕榈油为油相,Span-80为乳化剂,采用单因素试验及响应面试验优化超声协助制备W/O型乳液工艺,并考察优化条件下制备的乳液稳定性.结果表明:内水相含量是影响乳液粒度大小的关键因素,且超声功率对乳液的粒度及其分布存在过处理现象.优化工艺为超声功率300 W、超声时间15 min、内...  相似文献   

18.
Oil‐in‐water (O/W) emulsions with varying concentration of oil phase, medium‐chain triglyceride (MCT), were prepared using phase‐separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase‐separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP‐rich phase and a lower GA‐rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP‐rich phase, then to the GA‐rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase‐separated emulsions were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号