首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
分别以Fe(NO3)3·9H2O和钛酸四丁酯为铁源和钛源,以HF、HAc、NH4F、NH3·H2O、H2O2为形貌控制剂,通过沉淀分离法联合溶胶-凝胶法制备了不同形貌的TiO2/Fe2O3纳米复合材料。用X-射线粉末衍射仪(XRD)和场发射扫描电子显微镜(FESEM)对TiO2/Fe2O3样品的结构和形貌进行了分析,并探究了所合成的TiO2/Fe2O3纳米复合材料在紫外光照射条件下对亚甲基蓝(MB)的降解性能。结果表明,当以NH3·H2O为形貌控制剂时,制备的NH3·H2O-TiO2/Fe2  相似文献   

2.
采用水热合成手段,以磷钼酸为多金属氧酸盐(简称多酸)建筑块,三苯基膦为有机配体,通过自组装的方式制备了一种无机-有机杂化化合物,通过X-射线单晶衍射技术确定其分子式为H15{(PMo12O40)2[MoO4-(PPh3)4]2[NaO3-(PPh3)3][(H2O-PPh3)3](化合物1)。该化合物是由[PMo12O40]3-、[MoO4-(PPh3)4]2-、[NaO3-(PPh3)3]5-和H2O-PPh3<...  相似文献   

3.
采用不同金属硝酸盐浸渍Mn-MOF前体制备一系列MeOx/MnOx(Me=Co,Cr)复合金属氧化物催化剂用于低温NH3-SCR反应。分析金属掺杂和空速对锰基催化剂脱硝效率和N2O生成量的影响。通过XRD、SEM、N2吸附-脱附、XPS、H2-TPR、NH3-TPD等表征测试对制得的催化剂物理化学性质进行分析,结果表明,两种金属掺杂可不同程度上改善MnOx脱硝性能和抗硫性能。与MnOx催化剂相比,掺杂催化剂的外观呈现无规则的多孔结构。更大的比表面积为活性分子提供更多的活性位点,有利于脱硝反应进行。掺杂催化剂中Mn元素相以Mn3O4相为主,且峰强度较低,表明Mn元素相呈现高分散态。掺杂金属与锰氧化物产生相互作用,改变了锰元素的价态,提高了Mn4+和表面氧的含量。金属离子掺杂增强了催化剂的氧化还原性能,改善了MnOx  相似文献   

4.
等离子体改性是提高催化材料性能的有效途径。利用水热法合成了Co2(OH)2CO3前驱体,通过氧气低温等离子体技术,制备了表面改性的Co3O4催化剂(Co3O4-P),并对其进行了XRD、O2-TPD、H2-TPR、SEM、TEM、XPS、FTIR、Raman和UV-Vis等表征。结果表明,等离子体处理可以降低Co3O4中Co元素的平均价态,在其表面形成更多的缺陷点位,降低Co3O4的Co-O键能,增强其低温还原性能;在全太阳光谱的光强为776 mW/cm2、反应空速为30 000 mL/(g·h)、甲苯质量分数为500μg/g的测试条件下,Co3O4-P的甲苯降解率为100.0%,其值约为通过焙烧法制备的Co3O  相似文献   

5.
针对低温烟气脱硝过程中SO2和水蒸气严重影响催化剂的活性的问题,制备了Ce掺杂的Ti基磷酸氧钒催化剂(VPO-Ce/Ti O2),并对其在低温下脱硝性能进行了研究。实验结果表明:Ce掺杂使VPO/Ti O2催化剂的比表面积由6.8 m2/g提高到10.7 m2/g,催化剂中V5+和V4+的H2-TPR还原峰分别由原来的578℃和616℃偏移到538℃和601℃;同时,VPO-Ce/Ti O2的脱硝率在250℃时可达到96.8%。与未掺杂Ce的催化剂相比,最佳活性对应的温度点向低温方向偏移了50℃,并且具有同时抗硫抗水性能。  相似文献   

6.
为了降低电子传输层(Electron transport layer, ETL)与钙钛矿层之间的界面缺陷态密度,通过旋涂法在氧化铟锡(Indium tin oxide, ITO)透明导电玻璃上制备一层SnO2电子传输层,并在其上表面旋涂(NH4)2S以修饰SnO2和钙钛矿光吸收层之间的界面。通过X射线光电子能谱、扫描电子显微镜、电化学阻抗谱等表征手段分析(NH4)2S修饰对钙钛矿太阳能电池(Perovskite solar cells, PSCs)光电性能的影响。结果表明:NH4+降低了SnO2的表面羟基(—OH)缺陷态密度,增强了界面的疏水性,减少了钙钛矿的形核位点,增大了钙钛矿晶粒;S2-填补了SnO2表面的氧空位(OV),同时部分S2-还与未配位Pb2+连接减少界面处Pb缺陷,...  相似文献   

7.
为解决传统冰蓄冷工质过冷度大、凝固效率低的问题,基于化学共沉淀方法,引入酸处理和表面活性剂十二烷基苯磺酸钠(sodium dodecylbenzene sulfonate,SDBS),制备了高稳定Fe3O4包覆多壁碳纳米管(multi-walled carbon nanotube,MWCNT)纳米复合材料.通过X射线衍射(X-ray diffraction,XRD)和红外光谱对物相进行表征,并对H2O、SDBS+H2O、MWCNT+H2O、MWCNT+SDBS+H2O、MWCNT-Fe3O4+H2O和MWCNT-Fe3O4+SDBS+H2O等水基蓄冷工质的相变凝固特性进行研究.结果表明,经过界面修饰的复合材料稳定性好,Fe3O4粒径为10.87 nm;MWCNT纳米材料可作为成核基底...  相似文献   

8.
CO2与烯烃转化为环碳酸酯是当前一种有效的固碳策略,为此设计了一种掺氮多孔碳负载锆铈双金属(ZrxCe1-xO2/NC)催化剂。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、 N2-吸附、 CO2和NH3程序升温脱附(CO2-TPD和NH3-TPD)等表征了催化剂的形貌、物相、孔结构以及酸碱两性特征。结果表明,该催化剂可在无卤条件下催化CO2和苯乙烯一锅法制备环碳酸酯,特别是Zr0.75Ce0.25O2/NC在2 MPa CO2下,采用80℃/8 h和150℃/8 h分段工艺,实现了74.87%的转化率和80.43%的环碳酸酯选择性,这归因于氧化铈(CeO2)和氧化锆(ZrO2)在碳载体上的均匀分散,以及丰富的酸-碱性位点协同作用。  相似文献   

9.
以CoOCl2·6H2O为钴源,NaOH为沉降剂,通过水热法制备出Co3O4纳米粉末,并以Co3O4纳米粉末为敏感材料制作了旁热式气敏元件。X射线衍射和透射电子显微镜表征显示Co3O4纳米粉晶粒平均粒径15.6 nm。气敏测试结果表明元件在80 ℃、臭氧质量浓度为4.280×10-8 g/mL的条件下,对2.009×10-7 g/mL乙醇的灵敏度达到29,而空气中时元件对乙醇的灵敏度仅为4,O3的加入提高了Co3O4气敏元件在80 ℃的灵敏度,并将对乙醇气敏的最佳工作温度由100 ℃降低至80 ℃,实现了Co3O4在低温下(80 ℃)的气敏性能检测。  相似文献   

10.
为探索船舶尾气高效脱硝新方法,本文使用水力空化强化Na2S2O8进行湿法氧化脱硝。通过与鼓泡方式进行对比,证明了水力空化强化Na2S2O8脱硝的可行性。研究了溶液温度、入口压力、氯离子(Cl-)等因素对NO去除率的影响。结果显示:当Na2S2O8浓度为0.1 mol/L时,溶液温度从30℃升高到80℃,NO去除率由9.8%增长到71.2%。NO去除率随水力空化反应器入口压力提高呈现先上升后下降的趋势。入口压力为350 kPa时,NO去除率最高。Cl-可以显著提高NO去除率。溶液温度为60℃时,在浓度为0.1 mol/L的Na2S2O8溶液中加入氯化钠,能产生HOCl、Cl2等含氯氧化性物质,从而极大地增加反应溶液的氧化能力。NO去除率超过90%的维持时间长达14...  相似文献   

11.
以γ?Al2O3为载体、Ni为活性组元,通过引入助剂Mo改善Ni系催化剂金属分散度,制得NiMo/γ?Al2O3催化剂(NiMo系催化剂)。采用BET、XRD、H2?TPD、H2?TPR、透射电镜等多种表征手段对催化剂进行了物性表征,并利用加氢装置对催化剂性能进行评价,考察了金属分散度对催化剂催化活性的影响。结果表明,Mo的引入可有效减弱Ni与载体的相互作用,H2?TPR谱图低温还原峰明显前移,峰强度增强,催化剂活性比表面积由0.7 m2/g增加到15.3~16.1m2/g,金属分散度由0.80%提高到18.59%,增加了催化剂表面金属活性中心数量,提高了催化剂表面金属分散度;在相同的工艺条件下处理催化裂化重汽油,NiMo系催化剂较Ni系催化剂脱硫率提高了15.7%,烯烃饱和率提高了4.9%,脱硫选择性降低了3.4%。由此可见,NiMo系催化剂兼具较好的脱硫性能和脱硫选择性。  相似文献   

12.
以四水合钼酸铵[(NH4)6Mo7O24?4H2O]为钼源、六水合硝酸镍[Ni(NO3)2?6H2O]为镍源、H3PO4为磷源,采用溶液凝胶法制备前驱体,然后通过化学气相沉积法制备了块状NiMoP/C复合材料.采用XRD、SEM、TEM、XPS、Raman和N2-等温吸附脱附等测试技术,对NiMoP/C复合材料的物理化...  相似文献   

13.
以SnCl4·5H2O和HAuCl4·3H2O为原料,以L-半胱氨酸为连接剂,通过水热法制备Au@SnO2核壳结构纳米颗粒。由透射电子显微镜和X射线衍射结果发现二氧化锡(SnO2)与金(Au)颗粒的平均粒径分别为4.9 nm和10.5 nm。SnO2颗粒堆积在Au核表面形成了具有多孔壳结构的复合材料,比表面积达到178.82 m2/g,总孔隙体积为0.165 1 cm3/g。Au@SnO2核壳结构的存在使得传感器对正丁醇具有优异的气敏性能,在80 ℃时的灵敏度达到8 669.15,检测极限达到3.9×10-3 g/m3,显著提高了SnO2的灵敏度,并降低了最佳工作温度。  相似文献   

14.
以CuCl2·2H2O、SC(NH22和g-C3N4纳米片作为前驱体,在室温下采用简单的共沉淀法成功地制备了CuS nanotube/g-C3N4异质结。对碱源、g-C3N4加入顺序和反应时间等合成条件对CuS nanotube/g-C3N4异质结的光催化性能的影响进行了较系统的研究。结果表明:碱源是合成的关键因素。以Na2S·9H2O为碱源兼硫源,制备的CuS nanotube/g-C3N4异质结的光吸收边带明显红移,禁带宽度(Eg)和荧光强度明显降低,且光电流响应值为0.095 6 μA/cm2,相对于bulk g-C3N4提高了约3.1倍。将其用于光催化降解罗丹明B(RhB),45 min内RhB降解率约达100%,其降解速率相对于bulk g-C3N4提高了约47.6倍,这些结果说明CuS nanotube/g-C3N4具有较高的光电催化活性。并提出了CuS nanotube/g-C3N4异质结在光催化过程中载流子迁移转化的机理。  相似文献   

15.
采用高温固相法合成了BaZn1.06Al9.94O17:Tb3+,Ce3+荧光粉,并对其发光性能和能量传递机理进行了研究.研究结果表明:由于Tb3+离子的4f8 → 4f75d1跃迁,使得BaZn1.06Al9.94O17:Tb3+的激发带中心位于230 nm处.共掺杂Ce3+离子后,BaZn1.06Al9.94O17:Tb3+的激发光谱出现了明显的红移,在240~320 nm范围内的宽带激发归因于Ce3+离子的4f → 5d跃迁.由于Ce3+与Tb3+离子发生了能量传递,使得BaZn1.06Al9.94O17:Tb3+,Ce3+中Tb3+离子的5D47FJ(J=6、5、4和3)发射峰的发光强度比未掺杂Ce3+离子时提高了约15倍.因此,制备的BaZn1.06Al9.94O17:Tb3+,Ce3+荧光粉可望在照明、显示器件等应用中具有良好的应用价值.  相似文献   

16.
通过500℃焙烧卵状MnCO3前驱体,制得了一种高效降解亚甲基蓝的卵状ε-MnO2催化剂.采用扫描电子显微镜、X射线衍射分析仪、紫外可见分光光度计、比表面积测定仪对材料进行了测试.结果显示,卵状ε-MnO2催化剂具有很高的比表面积,为88 m2/g.将制得的卵状ε-MnO2材料应用于亚甲基蓝的降解,在H2O2存在下,卵状ε-MnO2对亚甲基蓝的脱色率高达92%,表现出在室温下去除亚甲基蓝的优越能力.  相似文献   

17.
研究了2种不同形态铁(EDTA-Fe(III)和柠檬酸铁)在5种常用缓冲溶液(碳酸盐缓冲液、Tris-HCl缓冲液、磷酸盐缓冲液、柠檬酸和Hepes缓冲液)中催化H2O2-NO2?导致牛血清白蛋白(BSA)发生的蛋白硝化和脂质过氧化,以此来探讨缓冲溶液及催化剂的选择对蛋白质硝化和脂质过氧化的影响。实验表明,在5种缓冲溶液中,EDTA-Fe(III)和柠檬酸铁均能够有效地催化H2O2-NO2?,导致BSA发生蛋白质硝化和脂质过氧化。其中,蛋白质硝化在碳酸盐缓冲溶液中最高,而脂质过氧化在Tris-HCl缓冲液中最高。不同缓冲液中,蛋白质硝化和脂质过氧化的程度有所不同,这表明缓冲溶液对蛋白质硝化和脂质过氧化有一定程度的影响。对于同一种缓冲溶液而言,EDTA-Fe(III)和柠檬酸铁催化H2O2-NO2?导致BSA发生的蛋白质硝化和脂质过氧化也有所差异,表明催化剂的选择同样对蛋白质硝化和脂质过氧化存在一定的影响。  相似文献   

18.
以毛柄金钱菌为碳前驱体制备了一种生物质多孔碳材料(BPC), 并将其修饰到玻碳电极(GCE)表面,以此构筑了一种电化学传感器(BPC/GCE).采用扫描电镜(SEM)、 X射线粉末衍射(XRD)、 X射线光电子能谱(XPS)、 拉曼(Raman)光谱和氮气吸附 - 脱附测试对BPC的形貌和结构进行了表征.运用循环伏安法(CV)、 交流阻抗法(EIS)及电流 - 时间曲线研究了过氧化氢(H2O2)在该传感器上的电化学行为.结果显示,基于BPC/GCE电极的H2O2传感器在15~300 μmol/L范围内, H2O2的浓度与传感器信号呈线性关系,检出限为 7.5 μmol/L,且抗干扰能力强.利用所制备的H2O2传感器检测人尿中的H2O2显示,其加标回收率为95.9%~101.2%,相对标准偏差为2.8%~8.7%,因此该方法可用于人体液中H2O2的检测.  相似文献   

19.
依次采用溶胶?凝胶法和浸渍法制备了一系列S、P、Si掺杂的TiO2载体和相应的VOx/TiO2催化剂,以提高催化剂的SCR性能。其中,S掺杂的VOx/TiO2催化剂具有最佳的中低温SCR性能和最宽的工作温度窗口。根据各种表征分析结果可知,掺杂元素通过促进VOx团聚生成具有较高的SCR反应活性的聚合态VOx;而S4+和Si4+取代TiO2中的Ti4+生成了Ti-O-S和Ti-O-Si键,这使催化剂中产生了更多的低价态V(V4++V3+)和表面化学吸附氧。两者协同作用可促进NO氧化生成NO2,产生的NO2可通过加速VOx物种在Redox过程中的重氧化来参与快速SCR反应,进而提升VOx/TiO2催化剂的中低温脱硝性能。由于P掺杂的VOx/TiO2催化剂中产生了较多的磷酸盐,从而导致其氧化还原性能和中低温活性相对较低。S、P、Si掺杂虽然对催化剂的酸性性能产生了显著的影响,但这并不是影响催化剂SCR活性的决定性因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号